Skip to main content

Cell Polarity and Morphology

  • Chapter
Signaling and the Cytoskeleton

Abstract

Cell responses to stimuli in their environments are sensitive, selective and tem porally or- dered. One of the most frequent responses is an induction of polarity, or asymmetric morphology, in one or more regions of the cell. Establishment and maintenance of cell polarity are requisite to the differentiation and development of organisms and to many cellular functions (1), including cell motility, localized membrane growth, vectorial transport across cell layers and activation of immune response mechanisms. The ultimate morphology of a cell is determined by a progression of events through three temporally ordered stages:

  1. 1)

    determination of the site(s) of origin of the alteration in morphology;

  2. 2)

    establishment of polarity; and

  3. 3)

    maintenance (or reversal) of the polarized state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Glotzer M, Hyman AA. Cell polarity. The importance of being polar. Curr Biol 1995; 5: 1102–1105.

    PubMed  CAS  Google Scholar 

  2. Drenckhahn D, Jons T, Kollert-Jons A, Koob R, Kraemer D, Wagner S. Cytoskeleton and epithelial polarity. Ren Physiol Biochem 1993; 16: 6–14.

    PubMed  CAS  Google Scholar 

  3. Mays RW, Nelson WJ, Marrs JA. Generation of epithelial cell polarity: roles for protein trafficking, membrane-cytoskeleton, and E-cadherin-mediated cell adhesion. Cold Spring Harb Symp Quant Biol 1995; 60: 763–773.

    PubMed  CAS  Google Scholar 

  4. Drubin DG, Nelson WJ. Origins of cell polarity. Cell 1996; 84: 335–344.

    PubMed  CAS  Google Scholar 

  5. Mays RW, Beck KA, Nelson WJ. Organization and function of the cytoskeleton in polarized epithelial cells: a component of the protein sorting machinery. Curr Opin Cell Biol 1994; 6: 16–24.

    PubMed  CAS  Google Scholar 

  6. Nicolson GL. Transmembrane control of the receptors on normal and tumor cells. H. Surface changes associated with transformation and malignancy. Biochim Biophys Acta 1976; 457: 57–108.

    Google Scholar 

  7. Bennett V, Gilligan DM. The spectrin-based membrane skeleton and micron-scale organization of the plasma membrane. Annu Rev Cell Biol 1993; 9: 27–66.

    PubMed  CAS  Google Scholar 

  8. Aberle H, Schwartz H, Kemler R. Cadherin-catenin complex: protein interactions and their implications for cadherin function. J Cell Biochem 1996; 61: 514–523.

    PubMed  CAS  Google Scholar 

  9. Taipale J, Keski-Oja J. Growth factors in the extracellular matrix. FASEB J 1997; 11: 51–59.

    PubMed  CAS  Google Scholar 

  10. Gumbiner BM. Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell 1996; 84: 345–357.

    PubMed  CAS  Google Scholar 

  11. Sheppard D. Epithelial integrins. Bioessays 1996; 18: 655–660.

    PubMed  CAS  Google Scholar 

  12. Schmidt JW, Piepenhagen PA, Nelson WJ. Modulation of epithelial morphogenesis and cell fate by cell-to-cell signals and regulated cell adhesion. Semin Cell Biol 1993; 4: 161–173.

    PubMed  CAS  Google Scholar 

  13. Rosales C, Juliano RL. Signal transduction by cell adhesion receptors in leukocytes. J Leukocyte Biol 1995; 57: 189–198.

    PubMed  CAS  Google Scholar 

  14. Hynes RO. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 1992; 69: 11–25.

    PubMed  CAS  Google Scholar 

  15. Ruoslahti E, Pierschbacher MD. New perspectives in cell adhesion: RGD and integrins. Science 1987; 238: 491–497.

    PubMed  CAS  Google Scholar 

  16. Turner CE, Burridge K. Transmembrane molecular assemblies in cell-extracellular matrix interactions. Curr Opin Cell Biol 1991; 3: 849–53.

    PubMed  CAS  Google Scholar 

  17. Burridge K, Chrzanowska-Wodnicka M. Focal adhesions, contractility, and signaling. Annu Rev Cell Dev Biol 1996; 12: 463–518.

    PubMed  CAS  Google Scholar 

  18. Dedhar S, Hannigan GE. Integrin cytoplasmic interactions and bidirectional trans-membrane signalling. Curr Opin Cell Biol 1996; 8: 657–669.

    Google Scholar 

  19. Ben-Ze’ev A. Animal cell shape changes and gene expression. BioEssays 1991; 13: 207–212.

    PubMed  Google Scholar 

  20. Otey CA. pp125FAK in the focal adhesion. Int Rev Cytol 1996; 167: 161–183.

    PubMed  CAS  Google Scholar 

  21. Schlaepfer DD, Hunter T. Signal transduction from the extracellular matrix-a role for the focal adhesion protein-tyrosine kinase FAK. Cell Struct Funct 1996; 21445–450.

    Google Scholar 

  22. Hanks SK, Polte TR. Signaling through focal adhesion kinase. Bioessays 1997; 19: 137–145.

    PubMed  CAS  Google Scholar 

  23. Yamada K, Miyamoto S. Integrin transmembrane signaling and cytoskeletal control. Curr Opin Cell Biol 1995; 7: 681–689.

    PubMed  CAS  Google Scholar 

  24. Juliano R. Cooperation between soluble factors and integrin-mediated cell anchorage in the control of cell growth and differentiation. BioEssays 1996; 18: 911–917.

    PubMed  CAS  Google Scholar 

  25. Lemmon MA, Falasca M, Ferguson KM, Schlessinger J. Regulatory recruitment of signalling molecules to the cell membrane by pleckstrin-homology domains. Trends Cell Biol 1997; 7: 237–242.

    CAS  Google Scholar 

  26. Folkman J, Moscona A. Role of cell shape in growth control. Nature 1978; 273: 345–349.

    PubMed  CAS  Google Scholar 

  27. Boone CW, Takeichi N, Paranjpe M, Gilden R. Vasoformative sarcomas arising from BALB/3T3 cells attached to solid substrates. Cancer Res 1976; 36: 1626–1633.

    PubMed  CAS  Google Scholar 

  28. Juliano R. Signal transduction by integrins and its role in the regulation of tumor growth. Cancer Metastasis Rev 1994; 13: 25–30.

    PubMed  CAS  Google Scholar 

  29. Ruoslahti E, Reed JC. Anchorage dependence, integrins, and apoptosis. Cell 1994; 77: 477–478.

    PubMed  CAS  Google Scholar 

  30. Frisch SM, Vuori K, Ruoslahti E, Chan-Hui P-Y. Control of adhesion-dependent cell survival by focal adhesion kinase. J Cell Biol 1996; 134: 793–799.

    PubMed  CAS  Google Scholar 

  31. Simons K, Fuller SD. Cell surface polarity in epithelia. Annu Rev Cell Biol 1985; 1: 243–288.

    PubMed  CAS  Google Scholar 

  32. Rodriguez-Boulan E, Nelson WJ. Morphogenesis of the polarized epithelial cell phenotype. Science 1989; 245:718–725.

    Google Scholar 

  33. Berridge MJ, Oshman JL. Transporting Epithelia. New York: Academic Press, 1972: 91–108.

    Google Scholar 

  34. Almers W, and Stirling C. Distribution of transport proteins over animal cell membranes. J Membr Biol 1984; 77: 169–186.

    PubMed  CAS  Google Scholar 

  35. Quaranta V. Epithelial integrins. Cell Differ Dev 1990; 32: 361–365.

    PubMed  CAS  Google Scholar 

  36. Garrod DR. Desmosomes and hemidesmosomes. Curr Opin Cell Biol 1993; 5: 3o - 4o.

    Google Scholar 

  37. Le Gall AH, Yeaman C, Muesch A, Rodriguez-Boulan E. Epithelial cell polarity: new perspectives. Semin Nephrol 1995; 15: 272–284.

    PubMed  Google Scholar 

  38. van Meer G, van’t Hof W, van Genderen I. Tight junctions and the polarity of lipids. in Cereijido M, ed. Tight Junctions. Boca Raton, FL: CRC Press Inc., 1992: 187–201.

    Google Scholar 

  39. Goodenough DA, Goliger JA, Paul DL. Connexins, connexons, and intercellular communication. Annu Rev Biochem 1996; 65: 475–502.

    PubMed  CAS  Google Scholar 

  40. Hunter T. Oncoprotein networks. Cell 1997; 88: 333–346.

    PubMed  CAS  Google Scholar 

  41. Tao YS, Edwards RA, Tubb B, Wang S, Bryan J, McCrea PD. p-catenin associates with the actin-bundling protein fascin in a noncadherin complex. J Cell Biol 1996; 134: 1271–1281.

    PubMed  CAS  Google Scholar 

  42. Takeichi M. Cadherin cell adhesion receptors as a morphogenetic regulator. Science 1991; 251: 1451–1455.

    PubMed  CAS  Google Scholar 

  43. Volberg T, Zick Y, Dror R, Sabanay I, Gilon C, Levitzki A, Geiger, B. The effect of tyrosine-specific protein phosphorylation on the assembly of adherens-type junctions. EMBO J 1992; 4: 1733–1742.

    Google Scholar 

  44. Maher PA, Pasquale EB, Wang JYJ, Singer SJ. Phosphotyrosine-containing proteins are concentrated in focal adhesions and intercellular junctions in normal cells. Proc Natl Acad Sci USA 1985; 82: 6576–6580.

    PubMed  CAS  Google Scholar 

  45. Tsukita S, Oishi K, Akiyama T, Yamanashi Y, Yamamoto T, Tsukita S. Specific proto-oncogenic tyrosine kinases of src family are enriched in cell-to-cell adherens junctions where the level of tyrosine phosphorylation is elevated. J Cell Biol 1991; 113: 867–879.

    PubMed  CAS  Google Scholar 

  46. Hamaguchi M, Matsuyoshi N, Ohnishi Y, Gotoh B, Takeichi M, Nagai Y. p6ov“c causes tyrosine phosphorylation and inactivation of the N-cadherin-catenin cell adhesion system. EMBO J 1993; 12: 307–314.

    PubMed  CAS  Google Scholar 

  47. Volberg T, Geiger B, Dror R, Zick Y. Modulation of intercellular adherens-type junctions and tyrosine phosphorylation of their components in RSV-transformed cultured chick lens cells. Cell Regulat 1991; 2: 105–120.

    CAS  Google Scholar 

  48. Hakomori S. Bifunctional role of glycosphingolipids. Modulators for transmembrane signaling and mediators for cellular interactions. J Biol Chem 1990; 265: 18713–18716.

    PubMed  CAS  Google Scholar 

  49. Hakomori S. Functional role of glycosphingolipids in cell recognition and signaling. J Biochem 1995; 118: 1091–1103.

    PubMed  CAS  Google Scholar 

  50. Zeller CB, Marchase RB. Gangliosides as modulators of cell function. Am J Physiol 1992; 262: C1341–1355.

    PubMed  CAS  Google Scholar 

  51. Bretscher A. Microfilament structure and function in the cortical cytoskeleton. Annu Rev Cell Biol 1991; 7: 337–374.

    PubMed  CAS  Google Scholar 

  52. Mooseker MS, Tilney LG. Organization of an actin filament-membrane complex. Filament polarity and membrane attachment in the microvilli of intestinal epithelial cells. J Cell Biol 1975; 67: 725–743.

    Google Scholar 

  53. Mooseker MS. Organization, chemistry, and assembly of the cytoskeletal apparatus of the intestinal brush border. Annu Rev Cell Biol 1985; 1: 209–241.

    PubMed  CAS  Google Scholar 

  54. Mooseker MS, Cheney RE. Unconventional myosins. Annu Rev Cell Dev Biol 1995; 11: 633–675.

    PubMed  CAS  Google Scholar 

  55. Rodriguez-Boulan E, Powell SK. Polarity of epithelial and neuronal cells. Annu Rev Cell Biol 1992; 8: 395–427.

    PubMed  CAS  Google Scholar 

  56. Matter K, Mellman I. Mechanisms of cell polarity: sorting and transport in epithelial cells. Curr Opin Cell Biol 1994; 6: 545–554.

    PubMed  CAS  Google Scholar 

  57. Nelson WJ. Renal epithelial cell polarity. Curr Opin Nephrol Hypertens 1992; 1: 59–67.

    PubMed  CAS  Google Scholar 

  58. Hammerton RW, Krzeminski KA, Mays RW, Ryan TA, Wollner DA, Nelson WJ. Mechanism for regulating cell surface distribution of Na+,K+-ATPase in polarized epithelial cells. Science 1991; 254: 847–850.

    PubMed  CAS  Google Scholar 

  59. Hubbard AL. Targeting of membrane and secretory proteins to the apical domain in epithelial cells. Semin Cell Biol 1991; 2: 365–374.

    PubMed  CAS  Google Scholar 

  60. Mostov KE, Cardone MH. Regulation of protein traffic in polarized epithelial cells. BioEssays 1995; 17: 129–138.

    PubMed  CAS  Google Scholar 

  61. Fath KR, Mamajiwalla SN, Burgess DR. The cytoskeleton in development of epithelial cell polarity. J Cell Sci Suppl 1993; 17: 65–73.

    PubMed  CAS  Google Scholar 

  62. Chant J. Generation of cell polarity in yeast. Curr Opin Cell Biol 1996; 8: 557–565.

    PubMed  CAS  Google Scholar 

  63. Cid VJ, Duran A, del Rey F, Snyder MP, Nombela C, Sanchez M. Molecular basis of cell integrity and morphogenesis in Saccharomyces cerevisiae. Microbiol Rev 1995; 59: 345–386.

    PubMed  CAS  Google Scholar 

  64. Chant J. Cell polarity in yeast. Trends Genet. 1994; 10: 328–333.

    PubMed  CAS  Google Scholar 

  65. Roemer T, Vallier LG, Snyder M. Selection of polarized growth sites in yeast. Trends Cell Biol 1996; 6: 434–441.

    PubMed  CAS  Google Scholar 

  66. Leberer E, Thomas DY, Whiteway M. Pheromone signalling and polarized morphogenesis in yeast. Curr Opin Genet Devel 1997; 7: 59–66.

    CAS  Google Scholar 

  67. Sells MA, Chernoff J. Emerging from the Pak: the p21-activated protein kinase family. Trends Cell Biol 1997; 7: 162–167.

    PubMed  CAS  Google Scholar 

  68. Peter M, Neiman A, Park H-O, Van Lohuizen M, Herskowitz I. Functional analysis of the interaction between the small GTP-binding protein cdc42 and the Ste2o protein kinase in yeast. EMBO J 1996; 15: 7046–7059.

    PubMed  CAS  Google Scholar 

  69. Ayscough KR, Drubin DG. Actin: general principles from studies in yeast. Annu Rev Cell Dev Biol 1996; 12: 129–160.

    PubMed  CAS  Google Scholar 

  70. Shepherd GM. Sensory transduction: entering the mainstream of membrane signaling. Cell 1991; 67: 845–851.

    PubMed  CAS  Google Scholar 

  71. Torre V, Ashmore JF, Lamb TD, Menini A. Transduction and adaptation in sensory receptor cells. J Neurosci 1995; 15: 7757–7768.

    PubMed  CAS  Google Scholar 

  72. Reed RR. How does the nose know? Cell 1990; 60: 1–2.

    PubMed  CAS  Google Scholar 

  73. Hackney CM, Furness DN. Mechanotransduction in vertebrate hair cells: structure and function of the stereociliary bundle. Am J Physiol 1995; 268: C1 - C13.

    PubMed  CAS  Google Scholar 

  74. Buck LB. The olfactory multigene family. Curr Opin Neurobiol 1992; 2: 282–288.

    PubMed  CAS  Google Scholar 

  75. Yan K, Greene E, Belga F, Rasenick MM. Synaptic membrane G-proteins are complexed with tubulin in situ. J Neurochem 1996; 66: 1489–1495.

    PubMed  CAS  Google Scholar 

  76. Pickles JO, Corey DP. Mechanoelectrical transduction by hair cells. Trends Neurosci 1992; 15: 254–259.

    PubMed  CAS  Google Scholar 

  77. Watson PA. Function follows form: generation of intracellular signals by cell deformation. FASEB J 1991; 5: 2013–2019.

    PubMed  CAS  Google Scholar 

  78. Garcia-Anoveros J, Corey DP. Mechanosensation: touch at the molecular level. Curr Biol 196; 6: 541–543.

    Google Scholar 

  79. Corey DP, Garcia-Anoveros J. Mechanosensation and DEG/ENaC ion channels. Science 1996; 273: 323–324

    PubMed  CAS  Google Scholar 

  80. Liu J, Schrank B, Waterston RH. Interaction between a putative mechanosensory membrane channel and a collagen. Science 1996; 273: 361–364.

    PubMed  CAS  Google Scholar 

  81. Hoffmann EK, Dunham PB. Membrane mechanisms and intracellular signalling in cell volume regulation. Int Rev Cytol 1995; 161: 173–262.

    PubMed  CAS  Google Scholar 

  82. Davies PF. Flow-mediated endothelial mechanotransduction. Physiol Rev 1995; 75: 519–560.

    PubMed  CAS  Google Scholar 

  83. Dewey CF Jr, Bussolari SR, Gimbrone MA Jr, Davies PF. The dynamic response of vascular endothelial cells to fluid shear stress. J Biomech Eng 1981; 103: 177–184.

    PubMed  Google Scholar 

  84. Franke RP, Grafe M, Schnittler H, Seiffge D, Mittermayer C, Drenckhahn D. Induction of human vascular endothelial stress fibers by fluid shear stress. Nature 1984; 307: 648–650.

    PubMed  CAS  Google Scholar 

  85. Girard PR, Nerem RM. Shear stress modulates endothelial cell morphology and F-actin organization through the regulation of focal adhesion-associated proteins. J Cell Physiol 1995; 163: 179–193.

    PubMed  CAS  Google Scholar 

  86. Morita T, Kurihara H, Maemura K, Yoshizumi M, Yazaki Y. Disruption of cytoskeletal structures mediates shear stress-induced endothelin-i gene expression in cultured porcine aortic endothelial cells. J Clin Invest 1993; 92:706–1712.

    Google Scholar 

  87. McNamee HP, Liley HG, Ingber DE. Integrin-dependent control of inositol lipid synthesis in vascular endothelial cells and smooth muscle cells. Exp Cell Res 1996; 224: 116–122.

    PubMed  CAS  Google Scholar 

  88. Wang N, Butler JP, Ingber DE. Mechanotransduction across the cell surface and through the cytoskeleton. Science 1993; 260: 1124–1127.

    PubMed  CAS  Google Scholar 

  89. Maniotis AJ, Chen CS, Ingber DE. Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc Natl Acad Sci USA 1997; 94: 849–854.

    PubMed  CAS  Google Scholar 

  90. Ando J, Kamiya A. Flow-dependent regulation of gene expression in vascular endothelial cells. Jpn Heart J 1996; 37: 19–32.

    PubMed  CAS  Google Scholar 

  91. Rakic P. Principles of neuronal cell migration. Experentia 1990; 46: 882–891.

    CAS  Google Scholar 

  92. Diaz-Nido J, Ulloa L, Sanchez C, Avila J. The role of the cytoskeleton in the morphological changes occurring during neuronal differentiation. Sem Cell Devel Biol 1996; 7: 733–739.

    CAS  Google Scholar 

  93. Black MM, Baas PW. The basis of polarity in neurons. Trends Neurosci 1989; 6: 211–214.

    Google Scholar 

  94. Schnapp BJ, Reese TS. Cytoplasmic structure in rapid-frozen axons. J Cell Biol 1982; 94: 667–679.

    PubMed  CAS  Google Scholar 

  95. Vale RD, Schnapp BJ, Reese TS, Sheetz MP. Different axoplasmic proteins generate movement in opposite directions along microtubules in vitro. Cell 1985; 40559–569.

    Google Scholar 

  96. Schoenfeld TA, Obar RA. Diverse distribution and function of fibrous microtubule-associated proteins in the nervous system. Int Rev Cytol 1994; 15167–137.

    Google Scholar 

  97. Hirokawa N. Microtubule organization and dynamics dependent on microtubuleassociated proteins. Curr Opin Cell Biol 1994; 6: 74–81.

    PubMed  CAS  Google Scholar 

  98. Sobue K. Actin-based cytoskeleton in growth cone activity. Neurosci Res 1993; 18: 91–102.

    PubMed  CAS  Google Scholar 

  99. Gordon-Weeks PR. Growth cones: the mechanism of neurite advance. BioEssays 1991; 13: 235–239.

    PubMed  CAS  Google Scholar 

  100. Goodman CS, Shatz CJ. Developmental mechanisms that generate precise patterns of neuronal connectivity. Neuron 1993; 10 (Suppl.): 77–98.

    Google Scholar 

  101. Neely MD, Nicholls JG. Electrical activity, growth cone motility and the cytoskeleton. J Exper Biol 1995; 198 1995.

    Google Scholar 

  102. Gomez TM, Roche FK, Letourneau PC. Chick sensory neuronal growth cones distinguish fibronectin from laminin by making substratum contacts that resemble focal contacts. J Neurobiol 1996; 2918–34.

    Google Scholar 

  103. Dodd J, Schuchardt A. Axon guidance: a compelling case for repelling growth cones. Cell 1996; 81: 471–474.

    Google Scholar 

  104. Tessier-Lavigne M. Eph receptor tyrosine kinases, axon repulsion, and the development of topographic maps. Cell 1995; 82: 345–348.

    PubMed  CAS  Google Scholar 

  105. Dorries U, Taylor J, Xiao Z, Lochter A, Montag D, Schachner M. Distinct effects of recombinant tenascin-C domains on neuronal cell adhesion, growth cone guidance, and neuronal polarity. J Neurosci Res 1996; 43: 420–438.

    PubMed  CAS  Google Scholar 

  106. Hall ZW, Sanes JR. Synaptic structure and development: the neuromuscular junction. Cell 1993; 72: 99–121.

    PubMed  Google Scholar 

  107. Sanes JR. Genetic analysis of postsynaptic differentiation at the vertebrate neuromuscular junction. Curr Opin Neurobiol 1997; 7: 93–100.

    PubMed  CAS  Google Scholar 

  108. Carraway KL III, Burden, SJ. Neuregulins and their receptors. Curr Opin Neurobiol 1995; 5: 1–7.

    Google Scholar 

  109. Gassmann M, Lemke G. Neuregulins and neuregulin receptors in neural development. Curr Opin Neurobiol 1997; 7: 87–92.

    PubMed  CAS  Google Scholar 

  110. Carraway KL III, and Cantley LC. A neu acquaintance for ErbB3 and ErbB4: a role for receptor heterodimerization in growth signaling. Cell 1994; 78: 5–8.

    PubMed  CAS  Google Scholar 

  111. Bowe MA, Fallon JR. The role of agrin in synapse formation. Annu. Rev. Neurosci. 1995; 18: 443–462.

    PubMed  CAS  Google Scholar 

  112. Gautam M, Noakes, PG, Moscoso L, Rupp F, Scheller RH, Merlie JP, Sanes JR. Defective neuromuscular synaptogenesis in agrin-deficient mutant mice. Cell 1996; 85: 525–535.

    PubMed  CAS  Google Scholar 

  113. Valenzuela DM, Stitt TN, DiStefano PS, Rojas E, Mattsson K, Compton DL, Nunez L, Park JS, Stark JL, Gies DR, Thomas S, Le Beau MM, Fernald AA, Copeland NG, Jenkins NA, Burden SJ, Glass DJ, Yancopolous GD. Receptor tyrosine kinase specific for the skeletal muscle lineage: expression in embryonic muscle, at the neuromuscular junction, and after injury. Neuron 1995; 15: 573–584.

    PubMed  CAS  Google Scholar 

  114. DeChiara TM, Bowen DC, Valenzuela DM, Simmons MV, Poueymirou WT, Thomas S, Kinetz E, Compton DL, Rojas E, Park JS, Smith C, DiStefano PS, Glass DJ, Burden SJ, Yancopolous GD. The receptor tyrosine kinase MuSK is required for neuromuscular junction formation in vivo. Cell 1996; 85: 501–512.

    PubMed  CAS  Google Scholar 

  115. Glass DJ, Bowen DC, Stitt TN, Radziejewski C, Bruno J, Ryan TE, Gies DR, Shah S, Mattsson K, Burden SJ, DiStefano PS, Valenzuela DM, DeChiara TM, Yancopoulos GD. Agrin acts via a MuSK receptor complex. Cell 1996; 85: 513–523.

    PubMed  CAS  Google Scholar 

  116. Gautam M, Noakes PG, Mudd J, Nichol M, Chu GC, Sanes JR, Merlie JP. Failure of postsynaptic specialization to develop at neuromuscular junctions of rapsyndeficient mice. Nature 1995: 377: 232–236.

    PubMed  CAS  Google Scholar 

  117. Carraway CAC, Carraway, KL. In: Hesketh HE, Pryme IF, eds. Treatise on the Cytoskeleton, Greenwich, CT: JAI Press, 1996: 207–238.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Carraway, K.L., Carraway, C.A.C., Carraway, K.L. (1998). Cell Polarity and Morphology. In: Signaling and the Cytoskeleton. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-12993-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-12993-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-12995-1

  • Online ISBN: 978-3-662-12993-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics