Skip to main content

Signaling Components and Pathways

  • Chapter
Signaling and the Cytoskeleton

Abstract

The survival of a multicellular organism requires a carefully orchestrated net work of inter-cellular communications which regulate every aspect of growth, metabolic function, differentiation, development and programmed cell death (apoptosis). Cells of both unicellular and multicellular organisms respond to stimuli in their environments in intricately sensitive and selective manners. These responses are temporally ordered, varied and frequently complex, ranging in complexity from sensory signals such as photons of light, to proteins on adjacent cells. Analogously, cellular responses vary significantly from relatively simple modifications of metabolic pathways, to global structural rearrangements affecting the entire cell. In addition to the commonly recognized extracellular stimuli, cells may also respond to intracellular signals (inside-out signaling). Examples of inside-out signaling will be described in subsequent chapters. Chapter 2 will focus largely on the transduction of extracellular signals in the more classical outside-in mode and will describe in general terms the components and general molecular mechanisms for transduction of signals. The objective of this chapter is to acquaint the reader with the most basic aspects of this rapidly expanding field, the concepts, classes of components and molecular mechanisms important in the transduction of signals. Where appropriate, attention will be drawn to the signaling systems or components which have been shown to interact with the cytoskeleton or to regulate its organization. Of necessity, the descriptions will be cursory and review or overview articles will be cited prominently.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD, eds. Molecular Biology of the Cell, 3rd ed., Garland Publishing Co., New York, Chap. 18.

    Google Scholar 

  2. Massague J, Pandiella A. Membrane-activated growth factors. Annu Rev Biochem 1993; 62: 515–541.

    PubMed  CAS  Google Scholar 

  3. Sporn MB, Todaro GJ. Autocrine secretion and malignant transformation of cells. New Engl J Med1980; 303: 878–880.

    Google Scholar 

  4. Bejcek BE, Li DY, Deuel TF. Transformation by v-sis occurs by an internal autoactivation mechanism. Science 1989; 245: 1496–1499.

    PubMed  CAS  Google Scholar 

  5. Carraway KL, Carraway CAC, Carraway KL III. Roles of ErbB-3 and ErbB-4 in the physiology and pathology of the mammary gland. J Mammary Gland Biol Neoplasia 1997; 2: 187–198.

    PubMed  CAS  Google Scholar 

  6. Berridge MJ, Irvine RF. Inositol phosphates and cell signaling. Nature 1989; 341: 197205.

    Google Scholar 

  7. Nishizuka Y. The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature 1984; 308: 693–697.

    PubMed  CAS  Google Scholar 

  8. Suzuki K, Sorimachi H, Yoshizawa T, Kinbara K, Ishiura S. Calpain: novel family members, activation, and physiologic function. Biol Chem Hoppe Seyler 1995; 376: 523–529.

    PubMed  CAS  Google Scholar 

  9. Kawasaki H, Kawashima S. Regulation of the calpain-calpastatin system by membranes. Mol Membr Biol 1996; 13: 217–224.

    PubMed  CAS  Google Scholar 

  10. Fox JE. Transmembrane signaling across the platelet integrin glycoprotein IIbIIIa. Ann NY Acad Sci 1994; 714: 75–87.

    PubMed  CAS  Google Scholar 

  11. Wang KK, Yuen PW. Calpain inhibition: an overview of its therapeutic potential. Trends Pharmacol Sci 1994; 15: 412–419.

    PubMed  CAS  Google Scholar 

  12. Rogers S, Wells R, Rechsteiner M. Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science 1986; 234: 364–368.

    PubMed  CAS  Google Scholar 

  13. Rechsteiner M, Rogers SW. PEST sequences and regulation by proteolysis. Trends Biochem Sci 1996; 21: 267–271.

    PubMed  CAS  Google Scholar 

  14. Barnes JA, Gomes AV. PEST sequences in calmodulin-binding proteins. Mol Cell Biochem 1995; 149–150: 17–27.

    Google Scholar 

  15. Nairn AC, Picciotto MR. Calcium/calmodulin-dependent protein kinases. Sem Cancer Biol 1994; 5: 295–303.

    CAS  Google Scholar 

  16. Ullrich A, Schlessinger J. Signal transduction by receptors with tyrosine kinase activity. Cell 1990; 61: 203–212.

    PubMed  CAS  Google Scholar 

  17. Mayer BJ, Baltimore D. Signalling through SH2 and SH3 domains. Trends Cell Biol 1993; 3: 8–13.

    PubMed  CAS  Google Scholar 

  18. Pawson T, Schlessinger J. SH2 and SH3 domains. Curr Biol 1993; 3: 434–442.

    PubMed  CAS  Google Scholar 

  19. Cohen GB, Ren R, Baltimore D. Modular binding domains in signal transduction proteins. Cell 1995; 80: 237–248.

    PubMed  CAS  Google Scholar 

  20. van der Geer P, Pawson T. The PTB domain: a new protein module implicated in signal transduction. Trends Biochem Sci 1995; 20: 277–280.

    PubMed  Google Scholar 

  21. Koch CA, Anderson D, Moran MF, Ellis C, Pawson T. SH2 and SH3 domains: elements that control interactions of cytoplasmic signaling proteins. Science 1991; 252: 668–674.

    PubMed  CAS  Google Scholar 

  22. Songyang Z, Cantley LC. Recognition and specificity in protein tyrosine kinase-mediated signalling. Trends Biochem Sci 1995; 20470–475.

    Google Scholar 

  23. Kavanaugh WM, Turck CW, Williams LT. PTB domain binding to signaling proteins through a sequence motif containing phosphotyrosine. Science 1995; 268: 1177 1179.

    Google Scholar 

  24. Cowburn D. Adaptors and integrators. Structure 1996; 4: 1005–1008.

    PubMed  CAS  Google Scholar 

  25. Bork P, Margolis B. A phosphotyrosine interaction domain. Cell 1995; 80: 693–694.

    PubMed  CAS  Google Scholar 

  26. Eck MJ. A new flavor in phosphotyrosine recognition. Structure. 1995; 3421–424.

    Google Scholar 

  27. Woods DF, Bryant PJ. The discs-large tumor suppressor gene of Drosophila encodes a guanylate kinase homolog localized at septate junctions. Cell 1991; 66: 451–464.

    PubMed  CAS  Google Scholar 

  28. Itoh M, Nagafuchi A, Yonemura S, Kitani-Yasuda T, Tsukita S, Tsukita S. The 22o-kD protein colocalizing with cadherins in non-epithelial cells is identical to ZO-1, a tight junction-associated protein in epithelial cells: cDNA cloning and immunoelectron microscopy. J Cell Biol 1993; 121: 491–502.

    PubMed  CAS  Google Scholar 

  29. Doyle DA, Lee A, Lewis J, Kim E, Sheng M, MacKinnon R. Crystal structures of a complexed and peptide-free membrane protein-binding domain: molecular basis of peptide recognition by PDZ. Cell 1996; 85: 1067–76.

    PubMed  CAS  Google Scholar 

  30. Saras J, Heldin CH. PDZ domains bind carboxy-terminal sequences of target proteins. Trends Biochem Sci 1996; 21: 455–458.

    PubMed  CAS  Google Scholar 

  31. Songyang Z, Fanning AS, Fu C, Xu J, Marfatia SM, Chishti AH, Crompton A, Chan AC, Anderson JM, Cantley LC. Recognition of unique carboxyl-terminal motifs by distinct PDZ domains. Science 1997; 275: 73–77.

    PubMed  CAS  Google Scholar 

  32. Ponting CP, Blake DJ, Davies KE, Kendrick-Jones J, Winder SJ. ZZ and TAZ: new putative zinc fingers in dystrophin and other proteins. Trends Biochem Sci 1996; 21: 11–13.

    PubMed  CAS  Google Scholar 

  33. Marfatia SM, Cabral JH, Lin L, Hough C, Bryant PJ, Stolz L, Chishti AH. Modular organization of the PDZ domains in the human discs-large protein suggests a mechanism for coupling PDZ domain-binding proteins to ATP and the membrane cytoskeleton. J Cell Biol 1996; 135: 753–766.

    PubMed  CAS  Google Scholar 

  34. Sudol M, Chen HI, Bougeret C, Einbond A, Bork P. Characterization of a novel protein-binding module-the WW domain. FEBS Lett 1995; 369: 67–71.

    PubMed  CAS  Google Scholar 

  35. Staub 0, Rotin D. WW domains. Structure 1996; 4: 495–499.

    CAS  Google Scholar 

  36. Carraway KL, Carraway CAC. Signaling, mitogenesis and the cytoskeleton: Where the action is. BioEssays 1995; 17: 171–175.

    CAS  Google Scholar 

  37. Shaw G. The pleckstrin homology domain: an intriguing multifunctional protein module. BioEssays 1996; 18: 35–46.

    CAS  Google Scholar 

  38. Gibson TJ, Hyvonen M,. Musacchio A, Saraste M, Birney E. PH domain: the first anniversary. Trends Biochem Sci 1994; 19: 349–353.

    CAS  Google Scholar 

  39. Lemmon MA, Ferguson KM, Schlessinger J. PH domains: diverse sequences with a common fold recruit signaling molecules to the cell surface. Cell 1996; 85: 621–624.

    PubMed  CAS  Google Scholar 

  40. Aitken A. 14–3–3 proteins on the MAP. Trends Biochem Sci 1995; 2095–97.

    Google Scholar 

  41. Aitken A. 14–3–3 and its possible role in co–ordinating multiple signalling pathways. Trends Cell Biol 1996; 6: 341 – 347.

    PubMed  CAS  Google Scholar 

  42. Morrison D. 14–3–3: modulators of signaling proteins? Science 1994; 266:56–57. 43• Muslin AJ, Tanner JW, Allen PM, Shaw AS. Interaction of 14–3–3 with signaling

    Google Scholar 

  43. proteins is mediated by the recognition of phosphoserine. Cell 1996; 84:889–897. 44. Klug A. Protein motifs 5. Zinc fingers. FASEB J 1995; 9: 597–604.

    Google Scholar 

  44. • Coleman JE. Zinc proteins: enzymes, storage proteins, transcription factors, and replication proteins. Annu Rev Biochem 1992; 61: 897–946.

    PubMed  CAS  Google Scholar 

  45. Hanas JS, Hazuda DJ, Bogenhagen DF, Wu FY-H, Wu C-W. Xenopus transcription factor A requires zinc for binding to the 5S RNA gene. J Biol Chem 1993; 258x4120–14125.

    Google Scholar 

  46. Pabo CO, Sauer RT. Transcription factors: structural families and principles of DNA recognition. Annu Rev Biochem 1992; 61: 1053–1095.

    PubMed  CAS  Google Scholar 

  47. Sanchez-Garcia I, Rabbitts TH. The LIM domain: a new structural motif found in zinc-finger-like proteins. Trends Genet 1994; 10: 315–320.

    PubMed  CAS  Google Scholar 

  48. Crawford AW, Pino JD, Beckerle MC. Biochemical and molecular characterization of the chicken cysteine-rich protein, a developmentally regulated LIM-domain protein that is associated with the actin cytoskeleton. J Cell Biol 1994; 124: 117–127.

    PubMed  CAS  Google Scholar 

  49. Dawid IB, Toyama R, Taira M. LIM domain proteins. Compt Rend 1995; 318: 295–306.

    CAS  Google Scholar 

  50. Busch H. The final common pathway of cancer. Cancer Res 1990; 50: 4830–4838.

    PubMed  CAS  Google Scholar 

  51. Arber S, Caroni P. Specificity of single LIM motifs in targeting and LIM/LIM interactions in situ. Genes Devel 1996; 10: 289–300.

    PubMed  CAS  Google Scholar 

  52. • Sadler I, Crawford AW, Michelsen JW, Beckerle MC. Zyxin and cCRP: two interactive LIM domain proteins associated with the cytoskeleton. J Cell Biol 1992; 119: 1573–1587.

    PubMed  CAS  Google Scholar 

  53. Turner CE, Miller JT. Primary sequence of paxillin contains putative SHz and SH3 domain binding motifs and multiple LIM domains: identification of a vinculin and pp125Fak-binding region. J Cell Sci 1994; 107: 1583–1591.

    PubMed  CAS  Google Scholar 

  54. Resh MD. Regulation of cellular signalling by fatty acid acylation and prenylation of signal transduction proteins. Cell Signal 1996; 8: 403–412.

    PubMed  CAS  Google Scholar 

  55. Bhatnagar RS, Gordon JI. Understanding covalent modifications of proteins by lipids: where cell biology and biophysics meet. Trends Cell Biol 1997; 7: 14–20.

    PubMed  CAS  Google Scholar 

  56. Udenfriend S, Kodukula K. How glycosylphosphatidylinositol-anchored membrane proteins are made. Annu Rev Biochem 1995; 64: 563–591.

    PubMed  CAS  Google Scholar 

  57. Carraway CAC, Carvajal ME, Li Y, Carraway KL. Association of p185neu with microfilaments via a large glycoprotein complex in mammary carcinoma microvilli. Evidence for a microfilament-associated signal transduction particle. J Biol Chem 1993; 268: 5582–5587.

    Google Scholar 

  58. Clark EA, Brugge JS. Integrins and signal transduction pathways: the road taken. Science 1995; 268: 233–239.

    PubMed  CAS  Google Scholar 

  59. Raff MC. Social controls on cell survival and cell death. Nature 1992; 356: 397–400.

    PubMed  CAS  Google Scholar 

  60. Nagata S. Apoptosis by death factor. Cell 1997; 88: 355–365.

    PubMed  CAS  Google Scholar 

  61. Carpenter G, Cohen S. Epidermal growth factor. Ann Rev Biochem 1979; 48: 193–216.

    PubMed  CAS  Google Scholar 

  62. Mroczkowski B, Reich M, Chen K, Bell GI, Cohen S. Recombinant human epidermal growth factor precursor is a glycosylated membrane protein with biological activity. Mol Cell Biol 1989; 9: 2772–2779.

    Google Scholar 

  63. Riese DJ II, Bermingham Y, van Raaij TM, Buckley S, Plowman GD, Stern DF. Betacellulin activates the epidermal growth factor receptor and erbB-4, and induces cellular response patterns distinct from those stimulated by epidermal growth factor or neuregulin-beta. Oncogene 1996; 12: 345–353.

    PubMed  CAS  Google Scholar 

  64. Carraway KL III, Cantley LC. A neu acquaintance for ErbB3 and ErbB4: a role for receptor heterodimerization in growth signaling. Cell 1994; 78: 5–8.

    PubMed  CAS  Google Scholar 

  65. Johnson GR, Wong L. Heparan sulfate is essential to amphiregulin-induced mito-genic signaling by the epidermal growth factor receptor. J Biol Chem 1994; 269: 27149–27154.

    PubMed  CAS  Google Scholar 

  66. Nakamura K, Iwamoto R, Mekada E. Membrane-anchored heparin-binding EGFlike growth factor (HB-EGF) and diphtheria toxin receptor-associated protein (DRAP27)/CD9 form a complex with integrin a3ß1 at cell-cell contact sites. J Cell Biol 1995; 129: 1691–1705.

    PubMed  CAS  Google Scholar 

  67. Fagotto F, Gumbiner BM. Cell contact-dependent signaling. Devel Biol 1996; 180: 445–454

    CAS  Google Scholar 

  68. Yamamoto D. Signaling mechanisms in induction of the R7 photoreceptor in the developing Drosophila retina. BioEssays 1994; 16: 237–244.

    CAS  Google Scholar 

  69. Kramer H. Patrilocal cell-cell interactions: sevenless captures its bride. Trends Cell Biol 1993; 3: 103–105.

    PubMed  CAS  Google Scholar 

  70. Flaumenhaft R, Rifkin DB. The extracellular regulation of growth factor action. Mol Biol Cell 1992; 3: 1057–1065.

    PubMed  CAS  Google Scholar 

  71. Tuzi NL, Gullick WJ. eph, the largest known family of putative growth factor receptors. Br J Cancer 1994; 69: 417–421.

    PubMed  CAS  Google Scholar 

  72. Bruckner K, Pasquale EB, Klein R. Tyrosine phosphorylation of transmembrane ligands for Eph receptors. Science 1997; 275: 1640–1643.

    PubMed  CAS  Google Scholar 

  73. Holland SJ, Gale NW, Mbamalu G, Yancopoulos GD, Henkemeyer M, Pawson T. Bidirectional signaling through the eph-family receptor Nuk and its trans-membrane ligands. Nature 1996; 383: 722–72. 5.

    Google Scholar 

  74. Carraway KL, Fregien N, Carraway KL III, Carraway CAC. Tumor sialomucin complexes as tumor antigens and modulators of cellular interactions and proliferation. J Cell Sci 1992; 103: 299–307.

    PubMed  CAS  Google Scholar 

  75. Taipale J, Keski-Oja J. Growth factors in the extracellular matrix. FASEB J 1997; 11: 51–59.

    PubMed  CAS  Google Scholar 

  76. Juliano RL, Haskill S. Signal transduction from the extracellular matrix. J Cell Biol 1993; 120: 577–585.

    PubMed  CAS  Google Scholar 

  77. Lafrenie RM, Yamada KM. Integrin-dependent signal transduction. J Cell Biochem 61: 543–53, 1996

    PubMed  CAS  Google Scholar 

  78. Hynes RO. Integrins: versatility, modulation and signaling in cell adhesion. Cell 1992; 69: 11–25.

    PubMed  CAS  Google Scholar 

  79. Juliano R. Cooperation between soluble factors and integrin-mediated cell anchorage in the control of cell growth and differentiation. BioEssays 1996; 18: 911–917.

    CAS  Google Scholar 

  80. Loeb JA, Fischbach GD. ARIA can be released from extracellular matrix through cleavage of a heparin-binding domain. J Cell Biol 1995; 130127–135.

    Google Scholar 

  81. Schlessinger J, Lax I, Lemmon M. Regulation of growth factor activation by proteoglycans: what is the role of the low affinity receptors? Cell 1995; 83: 357–360.

    PubMed  CAS  Google Scholar 

  82. Vlodaysky I, Miao HQ, Medalion B, Danagher P, Ron D. Involvement of heparan sulfate and related molecules in sequestration and growth promoting activity of fibroblast growth factor. Cancer Metastasis Rev 1996; 15: 177–86.

    Google Scholar 

  83. Schubert D. Collaborative interactions between growth factors and the extracellular matrix. Trends Cell Biol 1992; 2: 63–66.

    PubMed  CAS  Google Scholar 

  84. Wahli W, Martinez E. Superfamily of steroid nuclear receptors: positive and negative regulators of gene expression. FASEB J 1991; 52243–2249.

    Google Scholar 

  85. Pratt WB, Sanchez ER, Bresnick EH, Meshinchi S, Scherrer LC, Dalman FC, Welsh MJ. Interaction of the glucocorticoid receptor with the Mr 90,000 heat shock protein: an evolving model of ligand-mediated receptor transformation and translocation. Cancer Res 1989; 49: 22225–2229s.

    Google Scholar 

  86. Posas F, Saito H. Osmotic activation of the HOG MAPK pathway via Stellp MAPKKK: scaffold role of Pbs2p MAPKK. Science 1997; 276: 1702–1705.

    PubMed  CAS  Google Scholar 

  87. Fanti WJ, Johnson DE, Williams LT. Signalling by receptor tyrosine kinases. Annu Rev Biochem 1993; 62: 453–481.

    Google Scholar 

  88. Carraway CAC, Carraway KL. In: Hesketh HE, Pryme IF, eds. Treatise on the Cytoskeleton, Greenwich, CT: JAI Press, 1996: 207–238.

    Google Scholar 

  89. Panayotou G, Waterfield MD. The assembly of signalling complexes by receptor tyrosine kinases. BioEssays 1993; 15: 171–177.

    CAS  Google Scholar 

  90. White MF, Kahn CR. The insulin signaling system. J Biol Chem 1994; z69: 1–4.

    CAS  Google Scholar 

  91. Claesson-Welch L. Platelet-derived growth factor receptor signals. J Biol Chem 1994; 269: 32023–32026.

    Google Scholar 

  92. Hynes NE, Stern DF. The biology of erbB-2/neu/HER-2 and its role in cancer. Biochim Biophys Acta 1994; 1198: 165–184.

    PubMed  Google Scholar 

  93. Weiss FU, Daub H, Ullrich A. Novel mechanisms of RTK signal generation. Curr Opin Genet Devel 1997; 7: 80–86.

    CAS  Google Scholar 

  94. Boonstra J, Rijken P, Humbel B, Cremers F, Verkleij A, van Bergen en Henegouwen P. The epidermal growth factor. Cell Biol Int 1995; 19: 413–430.

    PubMed  CAS  Google Scholar 

  95. Yarden Y, Ullrich A. Growth factor receptor tyrosine kinases. Annu Rev Biochem 1988; 57: 443–478.

    PubMed  CAS  Google Scholar 

  96. Sorkin A, Waters CM. Endocytosis of growth factor receptors. BioEssays 1993; 15: 375–382.

    CAS  Google Scholar 

  97. Kanai Y, Ochiai A, Shibata T, Oyama T, Ushijima S, Akimoto S, Hirohashi S. c-erbB-2 gene product directly associates with p-catenin and plakoglobin. Biochem Biophys Res Commun 1995; 208: 1067–1072.

    PubMed  CAS  Google Scholar 

  98. Massague J. TGF signaling: receptors, transducers, and Mad proteins. Cell 1996; 85: 947–950.

    PubMed  CAS  Google Scholar 

  99. too. Massague J, Polyak K. Mammalian antiproliferative signals and their targets. Curr Opin Genet Devel 1995; 5:91–96.

    Google Scholar 

  100. lot. Massague J, Weis-Garcia F. Serine/threonine kinase receptors: mediators of transforming growth factor beta family signals. Cancer Sury 1996; 27:41–64.

    Google Scholar 

  101. Massague J, Hata A, Liu F. TGF-13 signalling through the Smad pathway. Trends Cell Biol 1997; 7: 187–192.

    CAS  Google Scholar 

  102. Karlin A. Structure of nicotinic acetylcholine receptors. Curr Opin Neurobiol 1993; 3: 299–309.

    PubMed  CAS  Google Scholar 

  103. Strader CD, Fong TM, Tota MR, Underwood D, Dixon RAF. Structure and function of G-protein-coupled receptors. Annu Rev Biochem 1994; 63: lo1–132.

    Google Scholar 

  104. van Biessen T, Luttrell LM, Hawes BE, Lefkowitz RJ. Mitogenic signaling via Gprotein-coupled receptors. Endoc Rev 1996; 17: 698–714.

    Google Scholar 

  105. Collins S, Lohse MJ, O’Dowd B, Caron MG, Lefkowitz RJ. Structure of G-proteincoupled receptors: the beta 2-adrenergic receptor as a model. Vitamins Hormones 1991; 46: 1–39.

    PubMed  CAS  Google Scholar 

  106. Hargrave PA. Seven-helix receptors. Curr Opin Struct Biol 1991; 1: 575–581.

    CAS  Google Scholar 

  107. Bohm SK, Grady EF, Bunnett NW. Regulatory mechanisms that modulate signalling by G-protein-coupled receptors. Biochem J 1997; 322: 1–18.

    PubMed  CAS  Google Scholar 

  108. Taniguchi T. Cytokine signaling through nonreceptor protein tyrosine kinases. Science 1995; 268: 251–255.

    PubMed  CAS  Google Scholar 

  109. Weiss A. T cell antigen receptor signal transduction: a tale of tails and cytoplasmic protein-tyrosine kinases. Cell 1993; 73: 209–212.

    PubMed  CAS  Google Scholar 

  110. Defranco AL. Transmembrane signaling by antigen receptors of B and T lymphocytes. Curr Opin Cell Biol 1995; 7: X63–175.

    Google Scholar 

  111. Weiss A, Littman DR. Signal transduction by lymphocyte antigen receptors. Cell 1994; 76: 263–274.

    PubMed  CAS  Google Scholar 

  112. Brown MT, Cooper JA. Regulation, substrates and functions of src. Biochim Biophys Acta 1996; 1287: 121–149.

    PubMed  Google Scholar 

  113. Erpel T, Courtneidge SA. Src family protein tyrosine kinases and cellular signal transduction pathways. Curr Opin Cell Biol 1995; 7: 176–182.

    PubMed  CAS  Google Scholar 

  114. Perlmutter RM, Levin SD, Appleby MW, Anderson SJ, Alberola-Ila J. Regulation of lymphocyte function by protein phosphorylation. Annu Rev Immunol 1993; 11: 451–499.

    PubMed  CAS  Google Scholar 

  115. Chan AC, Desai DM, Weiss A. The role of protein tyrosine kinases and protein phosphatases in T cell antigen receptor signal transduction. Annu Rev Immunol 1994; 12555–592.

    Google Scholar 

  116. Superti-Fulga G, Courtneidge SA. Structure-function relationships in Src family and related protein tyrosine kinases. BioEssays 1995; 17: 321–330.

    Google Scholar 

  117. Cross FR, Garber EA, Pellman D, Hanafusa H. A short sequence in the p6osrc N terminus is required for p6osrc myristylation and membrane association and for cell transformation. Mol Cell Biol 1984; 4: i834–42.

    Google Scholar 

  118. Chung S-W, Wong PMC. The biology of Abl during hemopoietic stem cell differentiation and development. Oncogene 1995; 10: 1261–1268.

    PubMed  CAS  Google Scholar 

  119. Pendergast AM. Nuclear tyrosine kinases: from Abl to WEE]. Curr Opin Cell Biol 1996; 8: 174–181.

    PubMed  CAS  Google Scholar 

  120. Wang JYJ. Abl tyrosine kinase in signal transduction and cell-cycle regulation. Curr Opin Genetics Devel 1993; 3: 35–43.

    CAS  Google Scholar 

  121. Courtneidge SA. Protein tyrosine kinases, with emphasis on the Src family. Sem Cancer Biol 1994; 5: 239–246.

    CAS  Google Scholar 

  122. Schaller MD, Parsons JT. Focal adhesion kinase and associated proteins. Curr Opin Cell Biol 1994; 6: 705–710.

    PubMed  CAS  Google Scholar 

  123. Hanks SK, Polte TR. Signaling through focal adhesion kinase. BioEssays 1997; 19: 137–145.

    CAS  Google Scholar 

  124. Darnell JE Jr, Kerr IM, Stark GM. JAK-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 1994; 264: 1415–1421.

    PubMed  CAS  Google Scholar 

  125. Briscoe J, Kohlhuber F, Muller M. JAKs and STATs branch out. Trends Cell Biol 1996; 6: 336–340.

    PubMed  CAS  Google Scholar 

  126. Hanks SK, Quinn AM, Hunter T. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 1988; 241: 42–52.

    PubMed  CAS  Google Scholar 

  127. Taylor SS, Bubis J, Toner-Webb J, Sarawat LD, First EA, Buechler JA, Knighton DR, Sowadski J. cAMP-dependent protein kinase: prototype for a family of enzymes. FASEB J 1988; 2: 2677–2685.

    CAS  Google Scholar 

  128. Beebe SJ. The cAMP-dependent protein kinases and cAMP signal transduction. Sem Cancer Biol 1994; 5: 285–294.

    CAS  Google Scholar 

  129. Rubin CS. A kinase anchor proteins and the intracellular targeting of signals carried by cyclic AMP. Biochim Biophys Acta 1994; 1224: 467–479.

    PubMed  Google Scholar 

  130. Mochly-Rosen D. Localization of protein kinases by anchoring proteins; a theme in signal transduction. Science 1995; 268: 247–251.

    PubMed  CAS  Google Scholar 

  131. Jaken S. Protein kinase C isozymes and substrates. Curr Opin Cell Biol 1996; 8: 168–173.

    PubMed  CAS  Google Scholar 

  132. Stabel S. Protein kinase C-an enzyme and its relatives. Sem Cancer Biol 1994; 5: 277–284.

    CAS  Google Scholar 

  133. Inagaki N, Ito M, Nakano T, Inagaki M. Spatiotemporal distribution of protein kinase and phosphatase activities. Trends Biochem Sci 1994; 19: 448–452.

    PubMed  CAS  Google Scholar 

  134. Faux MC, Scott JD. More on target with protein phosphorylation: conferring specificity by location. Trends Biochem Sci 1996; 21: 312–315.

    PubMed  CAS  Google Scholar 

  135. Nishizuka Y. Protein kinase C and lipid signaling for sustained cellular responses. FASEB J 1995; 9: 484–496.

    PubMed  CAS  Google Scholar 

  136. Cohen P. Signal integration at the level of protein kinases, protein phosphatases and their substrates. Trends Biochem Sci 1992; 17: 408–413.

    PubMed  CAS  Google Scholar 

  137. Kyriakis JM, Avruch J. Protein kinase cascades activated by stress and inflammatory cytokines. BioEssays 1996; 18: 567–577.

    CAS  Google Scholar 

  138. Robinson MJ, Cobb MH. Mitogen-activated protein kinase pathways. Curr Opin Cell Biol 1997; 9: 180–186.

    PubMed  CAS  Google Scholar 

  139. Davis RJ. Transcriptional regulation by MAP kinases. Molec Reprod Devel 1995; 42: 459–467.

    CAS  Google Scholar 

  140. Seger R, Krebs EG. The MAPK signaling cascade. FASEB J 1995; 9: 726–735.

    PubMed  CAS  Google Scholar 

  141. Morrison DK, Cutler RE Jr. The complexity of Raf-1 regulation. Curr Opin Cell Biol 1997; 9: 174–179.

    PubMed  CAS  Google Scholar 

  142. Cobb MH, Goldsmith EJ. How MAP kinases are regulated. J Biol Chem 1995; 270: 14843–14846.

    PubMed  CAS  Google Scholar 

  143. Magnuson NS, Beck T, Vahidi H, Hahn H, Smola U, Rapp UR. The Raf-1 serine/ threonine protein kinase. Sem Cancer Biol 1994; 5: 247–253.

    CAS  Google Scholar 

  144. Ferrari S, Thomas G. S6 phosphorylation and the p7o°6k/p85s6k. Crit Rev Biochem Molec Biol 1994; 29: 385–413.

    CAS  Google Scholar 

  145. Neel BG, Tonks NK. Protein tyrosine phosphatases in signal transduction. Curr Opin Cell Biol 1997; 9: 193–204.

    PubMed  CAS  Google Scholar 

  146. Denu JM, Stuckey JA, Saper MA, Dixon JE. Form and function in protein dephosphorylation. Cell 1996; 87: 361–364.

    PubMed  CAS  Google Scholar 

  147. Brady-Kalnay S, Tonks NK. Receptor protein tyrosine phosphatases, cell adhesion and signal transduction. Adv Prot Phosphatases. 1996; 8: 227–257.

    Google Scholar 

  148. Brady-Kalnay S, Tonks NK. Protein tyrosine phosphatases as adhesion receptors. Curr Opin Cell Biol 1995; 7: 650–657.

    PubMed  CAS  Google Scholar 

  149. Streuli M. Protein tyrosine phosphatases in signaling. Curr Opin Cell Biol 1996; 8: 182–188.

    PubMed  CAS  Google Scholar 

  150. Shenolikar S. Protein serine/threonine phosphatases-new avenues for cell regulation. Annu Rev Cell Biol 1994; 1o: 55–86.

    Google Scholar 

  151. Wera S, Hemmings BA. Serine/threonine protein phosphatases. Biochem J 1995; 311: 17–29.

    PubMed  CAS  Google Scholar 

  152. Barford D. Molecular mechanisms of the protein serine/threonine phosphatases. Trends Biochem Sci 1996; 21: 407–412.

    PubMed  CAS  Google Scholar 

  153. MacKintosh C, MacKintosh RW. Inhibitors of protein kinases and phosphatases. Trends Biochem Sci 1994; 19: 444–448.

    PubMed  CAS  Google Scholar 

  154. Bourne HR, Sanders DA, McCormick F. The GTPase superfamily: a conserved switch for diverse cell functions. Nature 1990; 348i125–132.

    Google Scholar 

  155. Bourne HR, Sanders DA, McCormick F. The GTPase superfamily: conserved structure and molecular mechanism. Nature 1991; 349: 117–127.

    PubMed  CAS  Google Scholar 

  156. Bokoch GM. Interplay between Ras-related and heterotrimeric GTP binding proteins: lifestyles of the BIG and little. FASEB J 1996; 10: 1290–1295.

    PubMed  CAS  Google Scholar 

  157. Neer EJ. Heterotrimeric G-proteins: organizers of transmembrane signals. Cell 1995; 80: 249–257.

    PubMed  CAS  Google Scholar 

  158. Casey PJ. Lipid modification of G-proteins. Curr Opin Cell Biol 1994; 6: 219–225.

    PubMed  CAS  Google Scholar 

  159. Neubig RR. Membrane organization in G-protein mechanisms. FASEB J 1994; 8: 939–946.

    PubMed  CAS  Google Scholar 

  160. Rodbell M. The role of GTP-binding proteins in signal transduction: from the sublimely simple to the conceptually complex. Curr Top Cell Regulat 1992; 32: 147.

    Google Scholar 

  161. Neer EJ. G-proteins: critical control points for transmembrane signals. Prot Sci 1994; 3: 3–14.

    CAS  Google Scholar 

  162. Clapham DE, Neer EJ. New roles for G-protein 13y-dimers in transmembrane signaling. Nature 1993; 365: 403–406.

    PubMed  CAS  Google Scholar 

  163. Hall A. Ras-related proteins. Curr Opin Cell Biol 1993; 5i265-z68.

    Google Scholar 

  164. Symons M. Rho family GTPases: the cytoskeleton and beyond. Trends Biochem Sci 1996; 21: 178–181.

    PubMed  CAS  Google Scholar 

  165. Boguski MS, McCormick F. Proteins regulating Ras and its relatives. Nature 1993; 366: 643–654.

    PubMed  CAS  Google Scholar 

  166. Feig LA. Guanine-nucleotide exchange factors: a family of positive regulators of Ras and related GTPases. Curr Opin Cell Biol 1994; 6: 204–211.

    PubMed  CAS  Google Scholar 

  167. Khosravi-Far R, Der CJ. The Ras signal transduction pathway. Cancer Metas Rev 1994; 13: 67–89.

    CAS  Google Scholar 

  168. Cerione RA, Zheng Y. The Dbl family of oncogenes. Curr Opin Cell Biol 1996; 8: 216–222.

    PubMed  CAS  Google Scholar 

  169. Macara IG, Lounsbury KM, Richards SA, Mckiernan C, Bar-Sagi D. The Ras superfamily of GTPases. FASEB J 1996; lo: 625–630.

    Google Scholar 

  170. Irani K, Xia Y, Zweier JL, Sollott SJ, Der CJ, Fearon ER, Sundaresan M, Finkel T, Goldschmidt-Clermont PJ. Mitogenic signaling mediated by oxidants in Ras-transformed fibroblasts. Science 1997; 275: 1649–1651.

    PubMed  CAS  Google Scholar 

  171. Krebs EG. Nobel lecture: protein phosphorylation and cellular regulation I. Biosci Rep 1993; 13: 127–142.

    PubMed  CAS  Google Scholar 

  172. Degerman E, Belfrage P, Manganiello VC. Structure, localization, and regulation of cGMP-inhibited phosphodiesterase (PDE3). J Biol Chem 1997; 272: 6823–6826.

    PubMed  CAS  Google Scholar 

  173. Graves LM, Lawrence JC Jr. Insulin, growth factors, and cAMP. Trends Endocrinol Metab 1996; 7: 43–50.

    PubMed  CAS  Google Scholar 

  174. Marshall CJ. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 1995; 80: 179–185.

    PubMed  CAS  Google Scholar 

  175. Vossler MR, Yao H, York RD, Pan M-G, Rim CS, Stork PJS. cAMP activates MAP kinase through a B-Raf-and Rapi-dependent pathway. Cell 1997; 89: 73–82.

    PubMed  CAS  Google Scholar 

  176. Buck LV. The olfactory multigene family. Curr Opin Neurobiol 1992; 2: 282–288.

    PubMed  CAS  Google Scholar 

  177. Kaupp UB, Koch KW. Role of cGMP and Cap` in vertebrate photoreceptor excitation and adaptation. Annu Rev Physiol 1992; 54: 153–176.

    PubMed  CAS  Google Scholar 

  178. Garbers DL, Lowe DG. Guanylyl cyclase receptors. J Biol Chem 1994; 269: 30741–30744.

    PubMed  CAS  Google Scholar 

  179. Garbers DL. Molecular basis of fertilization. Annu Rev Biochem 1989; 58: 719–742.

    PubMed  CAS  Google Scholar 

  180. Ghosh S, Strum JC, Bell RM. Lipid biochemistry: functions of glycerolipids and sphingolipids in cellular signaling. FASEB J 1997; 11: 45–5o.

    PubMed  CAS  Google Scholar 

  181. Spiegel S, Foster D, Kolesnick R. Signal transduction through lipid second messengers. Curr Opin Cell Biol 1996; 8: 159–167.

    PubMed  CAS  Google Scholar 

  182. Katan M. The control of inositol lipid hydrolysis. Cancer Sury 1996; 27: 199–211.

    CAS  Google Scholar 

  183. Wahl M, Carpenter G. Selective phospholipase C activation. BioEssays 1991; 13: 107–113.

    CAS  Google Scholar 

  184. Shariff A, Luna EJ. Diacylglycerol-stimulated formation of actin nucleation sites at plasma membranes. Science 1992; 256: 245–247.

    PubMed  CAS  Google Scholar 

  185. Lee SB, Rhee SG. Significance of PIP, hydrolysis and regulation of phospholipase C isozymes. Curr Opin Cell Biol 1995; 7: 183–189.

    PubMed  CAS  Google Scholar 

  186. Boarder MR. A role for phospholipase D in control of mitogenesis. Trends Pharm Sci 1994; 15: 57–62.

    PubMed  Google Scholar 

  187. Moolenar WH. Lysophosphatidic acid, a multifunctional phospholipid messenger. J Biol Chem 1995; 270: 12949–12952.

    Google Scholar 

  188. Moolenar WH. Lysophosphatidic acid signaling. Curr Opin Cell Biol 1995; 7: 203–210.

    Google Scholar 

  189. Glaser KB, Mobilio D, Chang JY, Senko N. Phospholipase A2 enzymes: regulation and inhibition. Trends Pharm Sci 1993; 14: 92–98.

    PubMed  CAS  Google Scholar 

  190. Liscovitch M, Cantley LC. Signal transduction and membrane traffic: the PITP/ phosphoinositide connection. Cell 1995; 81: 659–662.

    PubMed  CAS  Google Scholar 

  191. Chong LD, Traynor-Kaplan A, Bokoch GM, Schwartz MA. The small GTP-binding protein rho regulates a phosphatidylinositol 4-phosphate 5-kinase in mammalian cells. Cell 1994; 79: 507–513.

    PubMed  CAS  Google Scholar 

  192. Kapeller R, Cantley LC. Phosphatidylinositol 3-kinase. BioEssays 1994; i6: 565–576.

    Google Scholar 

  193. Shepherd PR, Reaves BJ, Davidson HW. Phosphoinositide 3-kinases and membrane traffic. Trends Cell Biol 1996; 6: 92–97.

    PubMed  CAS  Google Scholar 

  194. Varticovski L, Harrison-Findik D, Keeler ML, Susa M. Role of PI 3-kinase in mitogenesis. Biochim Biophys Acta 1994; 1226: 1–11.

    PubMed  CAS  Google Scholar 

  195. Fry MJ. Structure, regulation and function of phosphoinositide 3-kinases. Biochim Biophys Acta 1994; 1226: 237–268.

    PubMed  CAS  Google Scholar 

  196. Divecha N, Irvine RF. Phospholipid signaling. Cell 1995; 80: 269–278.

    PubMed  CAS  Google Scholar 

  197. Malarkey K, Belham CM, Paul A, Graham A, McLees A, Scott PH, Plevin R. The regulation of tyrosine kinase signaling pathways by growth factor G-proteincoupled receptors. Biochem J 1995; 309: 361–375.

    PubMed  CAS  Google Scholar 

  198. Rodriguez-Viciana P, Marte M, Warne PH, Downward J. Phosphatidylinositol 3-kinase: one of the effectors of Ras. Trans R Soc Lond B Biol Sci 1996; 35: 225–231. zoo. Testi R. Sphingomyelin breakdown and cell fate. Trends Biochem Sci 1996; 21: 468–471.

    Google Scholar 

  199. Hannun YA. The sphingomyelin cycle and the second messenger function of ceramide. J Biol Chem 1994; 269: 3125–3128.

    PubMed  CAS  Google Scholar 

  200. Hannun YA. Functions of ceramide in coordinating cellular responses to stress. Science 1996: 274: i855–1859.

    Google Scholar 

  201. Ruddon RW. Cancer Biology, Chap. 5, New York: Oxford University Press, 1995.

    Google Scholar 

  202. Grandori C, Eisenman RN. Myc target genes. Trends Biochem Sci 1997; 22: 177–181.

    PubMed  CAS  Google Scholar 

  203. Edwards DR. Cell signalling and the control of gene transcription. Trends Pharm Sci 1994; 15: 239–244.

    PubMed  CAS  Google Scholar 

  204. Karin M. Signal transduction from the cell surface to the nucleus through the phosphorylation of transcription factors. Curr Opin Cell Biol 1994; 6: 415–424.

    PubMed  CAS  Google Scholar 

  205. Vandromme M, Gauthier-Rouviere C, Lamb N, Fernandez A. Regulation of transcription factor localization: fine-tuning of gene expression. Trends Biochem Sci 1996; 21: 59–64.

    PubMed  CAS  Google Scholar 

  206. Carraway KL, Carraway CAC. Membrane-cytoskeleton interactions in animal cells. Biochim Biophys Acta 1989; 988: 147–171.

    PubMed  CAS  Google Scholar 

  207. Luna EJ, Hitt A. Cytoskeleton-plasma membrane interactions. Science 1992; 258: 955–964.

    PubMed  CAS  Google Scholar 

  208. Krueger JG, Garber EA, Goldberg AR. Subcellular localization of pp6o’°° in RSV-transformed cells. Curr Topics Microbiol Immunol 1983; 107: 51–124.

    CAS  Google Scholar 

  209. Machesky LM, Hall A. rho: a connection between membrane receptor signalling and the cytoskeleton. Trends Cell Biol 1996; 6: 304–310.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Carraway, K.L., Carraway, C.A.C., Carraway, K.L. (1998). Signaling Components and Pathways. In: Signaling and the Cytoskeleton. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-12993-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-12993-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-12995-1

  • Online ISBN: 978-3-662-12993-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics