Skip to main content

Part of the book series: Applications of Mathematics ((SMAP,volume 23))

  • 8885 Accesses

Abstract

Several applications of the strong schemes that were derived in the preceding chapters will be indicated in this chapter. These are the direct simulation of trajectories of stochastic dynamical systems, including stochastic flows, the testing of parametric estimators and Markov chain filters. In addition, some results on asymptotically efficient schemes will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographical Notes

  • Ebeling, W., H. Herzel, L. Schimansky-Geier, and W. Richert (1986). Influence of noise on Duffing-Van der Pol oscillators. Z. Angew. Math. Mech. 66(3), 141-146.

    Google Scholar 

  • Carverhill, A. P., M. Chappel, and K. D. Elworthy (1986). Characteristic exponents for stochastic flows. In Stochastic Processes-Mathematics and Physics,Volume 1158 of Lecture Notes in Math.,pp. 52–80. Springer.

    Google Scholar 

  • Baxendale, P. H. (1986). Asymptotic behaviour of stochastic flows of diffeomorphisms. In Stochastic Processes and Their Applications,Volume 1203 of Lecture Notes in Math.,pp. 1–19. Springer.

    Google Scholar 

  • Baxendale, P. H. and T. E. Harris (1986). Isotropic stochastic flows. Ann. Probab. 14(4), 1155–1179.

    Google Scholar 

  • Darling, R. W. R. (1992). Isotropic stochastic flows: a survey. In Diffusion Processes and Related Problems in Analysis, Vol. II, Volume 27 of Progr. Probab., pp. 7594. Birkhäuser Boston, Boston, MA.

    Google Scholar 

  • Kloeden, P. E., E. Platen, and H. Schurz (1991). The numerical solution of nonlinear stochastic dynamical systems: A brief introduction. J. Bifur. Chaos 1(2), 277286.

    Google Scholar 

  • Ikeda, N. and S. Watanabe (1989). Stochastic Differential Equations and Diffusion Processes (2nd ed.). North-Holland. (first edition (1981)).

    Google Scholar 

  • Kunita, H. (1984). Stochastic differential equations and stochastic flows of diffeomorphisms. In École d’été de probabilités de Saint-Flour, XII,Volume 1097 of Lecture Notes in Math.,pp. 143–303. Springer.

    Google Scholar 

  • Kunita, H. (1990). Stochastic flows and stochastic differential equations,Volume 24 of Cambridge Studies in Advanced Mathematics. Cambridge University Press.

    Google Scholar 

  • Emery, M. (1989). Stochastic Calculus in Manifolds. Springer.

    Google Scholar 

  • Novikov, A. A. (1972). Sequential estimation of the parameters of diffusion type processes. Math. Notes 12, 812–818.

    Article  Google Scholar 

  • Taraskin, A. F. (1974). On the asymptotic normality of vector-valued stochastic integrals and estimates of a multi-dimensional diffusion process. Theory Probab. Math. Statist. 2, 209–224.

    Google Scholar 

  • Brown, B. M. and J. T. Hewitt (1975). Asymptotic likelihood theorem for diffusion processes. J. Appl. Probab. 12, 228–238.

    Article  MathSciNet  MATH  Google Scholar 

  • Balakrishnan, A. V. (1977). Likelihood ratios for time-continuous data models: the white noise approach. In New Trends in Systems Analysis,Volume 2 of Lecture Notes in Control and Inform. Sci.,pp. 102–110. Springer.

    Google Scholar 

  • Liptser, R. and A. Shiryaev (1977). Statistics of Random Processes: I. General Theory, Volume 5 of Appl. Math. Springer.

    Google Scholar 

  • Liptser, R. and A. Shiryaev (1978). Statistics of Random Processes: II. Applications, Volume 6 of Appl. Math. Springer.

    Google Scholar 

  • Lanska, V. (1979). Minimum contrast estimation in diffusion processes. J. AppL Probab. 16, 65–75.

    Article  MathSciNet  MATH  Google Scholar 

  • Bellach, B. (1983). Parameter estimators in linear stochastic differential equations and their asymptotic properties. Math. Opemtionsforsch. Statist. Ser. Statist. 14 (1), 141–191.

    MathSciNet  MATH  Google Scholar 

  • Kozin, F. (1983). Estimation of parameters for systems driven by white noise. In K. Hennig (Ed.), Random Vibrations and Reliability, CISM Lecture Notes, pp. 163–172. Akademie Verlag, Berlin.

    Google Scholar 

  • Linkov, J. N. (1984). On the asymptotic behaviour of likelihood functions for certain problems for semi-martingales. Teor. Sluch. Proc. 12 (1), 141–191. (in Russian).

    Google Scholar 

  • Heyde, C. C. (1989). Quasi-likelihood and optimality for estimating functions: some current unifying themes. Bull. Inst. Internat. Statist. 53 (1), 19–29.

    MathSciNet  Google Scholar 

  • Heyde, C. C. (1997). Quasi-Likelihood and Its Application. A General Approach to Optimal Parameter Estimation. Springer Ser. Statist. Springer.

    Google Scholar 

  • Kuchler, U. and M. Sorensen (1989). Exponential families of stochastic processes: A unifying semimartingale approach. Internat. Statist. Rev. 57, 123–144.

    Article  Google Scholar 

  • Kuchler, U. and M. Sorensen (1997). Exponential Families of Stochastic Processes. Springer.

    Google Scholar 

  • Sorensen, M. (1990). On quasi-likelihood for semi-martingales. Stochastic Process. Appl. 35, 331–346.

    MathSciNet  Google Scholar 

  • Kazimierczyk, P. (1989). Consistent ML estimator for drift parameters of both ergodic and nonergodic diffusions. In Stochastic Systems and Optimization,Volume 136 of Lecture Notes in Control and Inform. Sci.,pp. 318–327. Springer.

    Google Scholar 

  • Kloeden, P. E., E. Platen, H. Schurz, and M. Sorensen (1996). On effects of discretization on estimators of drift parameters for diffusion processes. J. Appl. Probab. 33, 1061–1076.

    Article  MathSciNet  MATH  Google Scholar 

  • Clark, J. M. C. (1978). The design of robust approximations to the stochastic differential equations of nonlinear filtering. In J. K. Skwirzynski (Ed.), Communication Systems and Random Processes Theory, Volume 25 of NATO Advanced Study Inst. Series. Series E: Applied Sciences, pp. 721–734. Sijthoff and Noordhoff, Alphen naan den Rijn.

    Google Scholar 

  • Clark, J. M. C. (1982). An efficient approximation scheme for a class of stochastic differential equations. In Advances in Filtering and Optimal Stochastic Control,Volume 42 of Lecture Notes in Control and Inform. Sci.,pp. 69–78. Springer.

    Google Scholar 

  • Newton, N. J. (1984). Discrete Approximations for Markov Chains. Ph. D. thesis, Univ. London.

    Google Scholar 

  • Newton, N. J. (1986a). An asymptotic efficient difference formula for solving stochastic differential equations. Stochastics 19, 175–206.

    Article  MathSciNet  MATH  Google Scholar 

  • Newton, N. J. (1991). Asymptotically efficient Runge-Kutta methods for a class of Ito and Stratonovich equations. SIAM J. Appl. Math. 51, 542–567.

    Article  MathSciNet  MATH  Google Scholar 

  • Newton, N. J. (1984). Discrete Approximations for Markov Chains. Ph. D. thesis, Univ. London.

    Google Scholar 

  • Kloeden, P. E. and E. Platen (1992). Higher order implicit strong numerical schemes for stochastic differential equations. J. Statist. Phys. 66 (1/2), 283–314.

    Article  MathSciNet  MATH  Google Scholar 

  • Kloeden, P. E., E. Platen, and H. Schurz (1993). Higher order approximate Markov chain filters. In S. Cambanis et. al. (Ed.), Stochastic Processes - A Festschrift in Honour of Gopinath Kallianpur, pp. 181–190. Springer.

    Google Scholar 

  • Castell, F. and J. Gaines (1996). The ordinary differential equation approach to asymptotically efficient schemes for solution of stochastic differential equations. Ann. Inst. H. Poincaré Probab. Statist. 32 (2), 231–250.

    MathSciNet  MATH  Google Scholar 

  • Fischer, P. and E. Platen (1998). Applications of the balanced method to stochastic differential equations in filtering. Technical report, Australian National University, Canberra, Financial Mathematics Research Reports. FMRR 005–98.

    Google Scholar 

  • Newton, N. J. (1991). Asymptotically efficient Runge-Kutta methods for a class of Ito and Stratonovich equations. SIAM J. Appl. Math. 51, 542–567.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kloeden, P.E., Platen, E. (1992). Selected Applications of Strong Approximations. In: Numerical Solution of Stochastic Differential Equations. Applications of Mathematics, vol 23. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-12616-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-12616-5_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08107-1

  • Online ISBN: 978-3-662-12616-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics