Skip to main content

Transgenic Dianthus spp. (Carnation)

  • Chapter
Transgenic Crops III

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 48))

  • 341 Accesses

Abstract

Carnation, native to the Mediterranean coastal region, is one of the world’s major cut-flower crops (VBN 1995). It is a member of the family Caryophyllaceae and belongs to the genus Dianthus, which contains over 300 species. Commercial carnations, grouped into the phenotypical categories standard and spray, result from crosses within Dianthus caryophyllus. Pot carnations, resulting from crosses involving D. chinensis and D. barbatus, are also becoming popular among consumers. As one of the major contributors to the cut-flower market and a commercial leader in terms of the number of stems sold worldwide (Jensen and Malter 1995), carnation has been an important target for the breeding of new varieties with novel characteristics. To date, new carnation varieties have been produced mainly via classical breeding, and are propagated vegetatively. However, high heterozygosity, a limited gene pool, and almost no knowledge of carnation’s genetic makeup severely restrict such breeding programs (Woodson 1991).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aharoni A (1996) Developing efficient regeneration and transformation methods for carnation and gypsophila. MSc Thesis ( The Hebrew University of Jerusalem, Israel )

    Google Scholar 

  • Comai L, Moran P, Maslyar D (1990) Novel and useful properties of a chimeric plant promoter combining CaMV 35S and MAS elements. Plant Mol Biol 15: 373–381

    Google Scholar 

  • Elomaa P, Holton T (1994) Modification of flower color using genetic engineering. Biotechnol Genet Engin Rev 12: 63–88

    Article  CAS  Google Scholar 

  • Firoozabady E, Moy Y, Tucker W, Robinson K, Gutterson N (1995) Efficient transformation and regeneration of carnation cultivars using Agrobacterium. Mol Breed 1: 283–293

    Article  CAS  Google Scholar 

  • Forkmann G (1993) Control of pigmentation in natural and transgenic plants. Curr Opin Biotechnol 4: 159–165

    Article  CAS  Google Scholar 

  • Forkmann G, Dedio J, Henkel J, Min BW, Wassenegger M (1995) Genetics, biosynthesis and molecular biology of flower color of Dianthus caryophyllus (carnation). Acta Hortic 420: 29–31

    CAS  Google Scholar 

  • Gaudin V, Vrain T, Jouanin L (1994) Bacterial genes modifying hormonal balances in plants. Plant Physiol Biochem 32: 11–29

    CAS  Google Scholar 

  • Holton TA, Cornish EC (1995) Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell 7: 7071–1083

    Google Scholar 

  • Hood E, Gelvin S, Melchers L, Hoekema A (1993) New Agrobacterium helper plasmids for gene transfer to plants. Trans Res 2: 208–218

    Article  CAS  Google Scholar 

  • Janssen B, Gardner R (1989) Localized transient expression of GUS in leaf disks following cocultivation with Agrobacterium. Plant Mol Biol 14: 61–72

    Article  Google Scholar 

  • Jensen MH, Malter AJ (1995) Protected agriculture, a global review. World Bank Tech Pap 253: 144–146

    Google Scholar 

  • Lazo G, Stein P, Ludwig R (1991) A DNA transformation-competent Arabidopsis genomic library in Agrobacterium Bio/Technology 9: 963–967

    CAS  Google Scholar 

  • Li Y, Hagen G, Guilfoyle TJ (1992) Altered morphology in transgenic tobacco plants that overproduce cytokinins in specific tissues and organs. Dev Biol 153: 386–395

    Article  PubMed  CAS  Google Scholar 

  • Lu CY, Chandler SF (1995) Genetic transformation of Dianthus caryophyllus (carnation). In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 34. Plant protoplast and genetic engineering VI. Springer, Berlin Heidelberg New York pp 157–170

    Google Scholar 

  • Lu CY, Nugent G, Wardley-Richardson T, Chandler SF, Young R, Dalling MJ (1991) Agrobacterium-mediated transformation of carnation (Dianthus caryophyllus L.). Biotechnology 9: 864–868

    Google Scholar 

  • McBride KE, Summerfelt KR (1990) Improved binary vectors for Agrobacterium-mediated plant transformation. Plant Mol Biol 14: 269–276

    Article  PubMed  CAS  Google Scholar 

  • Mol JNN, Holton TA, Koes RE (1995) Floriculture: genetic engineering of commercial traits. Trends Biotechnol 13: 350–355

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473–497

    Article  CAS  Google Scholar 

  • Nilsson O, Olsson 0 (1997) Getting to the root: the role of the Agrobacterium rhizogenes rol genes in the formation of hairy roots. Physiol Plant 100: 463–473

    CAS  Google Scholar 

  • Savin KW, Baudinette SC, Graham MW, Michael MZ, Nugent GD, Lu C-L, Chandler SF, Cornish EC (1995) Antisense ACC oxidase RNA delays carnation petal senescence. HortScience 30: 970–972

    CAS  Google Scholar 

  • Schmulling T, Schell J. Spena A (1988) Single genes from Agrobacterium rhizogenes influence plant development. EMBO J 7: 2621–2629

    PubMed  CAS  Google Scholar 

  • Sitbon F, Sunberg B, Olsson O, Sandberg G (1991) Free and conjugated IAA contents in transgenic tobacco plants expressing the iaaM and iaaH IAA biosynthesis genes from Agrobacterium tumefaciens. Plant Physiol 95: 480–485

    Article  PubMed  CAS  Google Scholar 

  • Sitbon F, Little CHA, Olsson O, Sand G (1992a) Correlation between the expression of T-DNA IAA biosynthesis genes from developmentally regulated promoters and the distribution of IAA in different organs of transgenic tobacco. Physiol Plant 85: 679–688

    Article  CAS  Google Scholar 

  • Sitbon F, Hennion S, Sundberg B, Little CHA, Olsson O, Sandberg G (1992b) Transgenic tobacco plants coexpressing the Agrobacterium tumefaciens iaaM and iaaH genes display altered growth and indoleacetic acid metabolism. Plant Physiol 99: 1062–1069

    Article  PubMed  CAS  Google Scholar 

  • Stomp AM (1992) Histochemical localization of (3-glucuronidase. In: Gallagher SR (ed) GUS Protocols: using the GUS gene as a reporter of gene expression. Academic Press, San Diego, pp 103–113

    Google Scholar 

  • van Altvorst AC, Rikesen T, Koehorst H, Dons JJM (1995a) Transgenic carnations obtained by Agrobacterium tumefaciens-mediated transformation of leaf explants. Transgen Res 4: 105–113

    Article  Google Scholar 

  • van Altvorst AC, Yancheva S. Dons H (1995b) Cells within the nodal region of carnation exhibit a high potential for adventitious shoot formation. Plant Cell Tissue Organ Cult 40: 151–157

    Article  Google Scholar 

  • van Altvorst AC, Koehorst H, de Jong J, Dons HJM (1996) Transgenic carnation plants obtained by Agrobacterium tumefaciens-mediated transformation of petal explants. Plant Cell Tissue Organ Cult 169: 169–173

    Article  Google Scholar 

  • Vancanneyt G, Schmidt R, O’Connor-Sanchez A. Willmitzer L, Rocha-Sosa M (1990) Construction of an intron-containing marker gene: Splicing of the intron in transgenic plants and its use in monitoring early events in Agrobacterium-mediated plant transformation. Mol Gen Genet 220: 245–250

    Article  PubMed  CAS  Google Scholar 

  • van der Salm TPM, Hanisch ten Cate ChH, Dons JJM (1996) Prospects for application of rol genes for crop improvement. Plant Mol Biol Rep 14: 207–228

    Google Scholar 

  • VBN (1995) Vereniging van Bloemenveilingen in Nederland, Statistiek Boeck, Leiden

    Google Scholar 

  • Woodson WR (1991) Biotechnology of floriculture crops. HortScience 26: 1029–1033

    CAS  Google Scholar 

  • Yenofsky RL, Fine MF, Pellow JW (1990) A mutant neomycin phosphotransferase II gene reduces the resistance of transformants to antibiotic selection pressure. Proc Natl Acad Sci USA 87: 3435–3439

    Article  PubMed  CAS  Google Scholar 

  • Zuker A, Chang P-FL, Ahroni A, Cheah K, Woodson WR, Bressan RA, Watad AA, Hasegawa PM, Vainstein A (1995) Transformation of carnation by microprojectile bombardment. Sci Hortic 64: 177–185

    Article  Google Scholar 

  • Zuker A, Ahroni A, Tzfira T, Ovadis M, Itzhaki H, Shklarman E, Ben-Meir H, Vainstein A (1998a) Application of an integrative system based on microprojectile bombardment and Agrobacterium tumefaciens to generate transgenic carnation plants with novel characteristics. I X Int Congr on Plant Tissue and Cell Culture, Jerusalem, Israel

    Google Scholar 

  • Zuker A, Tzfira T, Vainstein A (1998h) Genetic engineering for cut-flower improvement. Biotechnol Adv 16: 33–79

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zuker, A. et al. (2001). Transgenic Dianthus spp. (Carnation). In: Bajaj, Y.P.S. (eds) Transgenic Crops III. Biotechnology in Agriculture and Forestry, vol 48. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10603-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10603-7_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08643-4

  • Online ISBN: 978-3-662-10603-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics