Skip to main content

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 254))

Abstract

In the past two decades important steps have been taken towards the understanding of the molecular pathogeneses that underlie many malignant diseases. Studies in cancer genetics have identified loci which play central roles in the regulation of cell proliferation and differentiation and whose mutations are associated with tumorigenesis. Functional characterizations of these loci often demonstrated that they encode factors, which are directly involved in transcriptional regulation of gene expression. The last two decades have also seen some remarkable advances in the treatment of cancer, particularly hematopoietic malignancies, where acute promyelocytic leukemia (APL) has led the way both in treatment innovation and in the understanding of the molecular events underlying the disease process. The demonstration that APL could respond to differentiation therapy with all-transretinoic acid (ATRA) as a sole therapeutic agent has made this relatively rare hematopoietic malignancy a model disease. Interest in APL was further enhanced by the discovery that the retinoic acid receptor-α (RARα) locus, a member of the nuclear receptor (NR) superfamily, was reciprocally translocated to a gene of unknown function called PML (for Promyelocytic Leukemia) leading to expression of PML-RARa and RARa-PML fusion proteins. This article will review the current understanding of the role that the NR corepressors play in the molecular pathogenesis of APL and address recent data directly implicating these molecules in processes associated with the development of more common myeloid and lymphoid malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alland L, Muhle R, Hou H Jr, Potes J, Chin L, Schreiber-Agus N, DePinho RA (1997) Role for N-CoRand histone deacetylase in Sin3-mediated transcriptional repression. Nature 387: 49 - 55

    PubMed  CAS  Google Scholar 

  • Amatruda T, Koeffler H (1986) Retinoids and cells of the hematopoietic system. In: Sherman M (ed) Retinoids and Cell Differentiation. CRC Press, Boca Raton, Florida, pp 79 - 103

    Google Scholar 

  • Archer SY, Hodin RA (1999) Histone acetylation and cancer. Curr Opin Genet Dev 9: 171 - 174

    PubMed  CAS  Google Scholar 

  • Aronson BD, Fisher AL, Blechman K, Caudy M, Gergen JP (1997) Groucho-dependent and -independent repression activities of Runt domain proteins. Mol Cell Biol 17: 5581 - 5587

    PubMed  CAS  Google Scholar 

  • Bannister AJ, Kouzarides T (1996) The CBP co-activator is a histone acetyltransferase. Nature 384: 641 - 643

    PubMed  CAS  Google Scholar 

  • Baur EV, Zechel C, Heery D, Heine MJS, Gamier JM, Vivat V, Ledouarin B, Gronemeyer H, Chambon P, Losson R (1996) Differential ligand-dependent interactions between the AF-2 activating domain of nuclear receptors and the putative transcriptional intermediary factors msugl and Tifl. Embo J 15: 110 - 124

    Google Scholar 

  • Benoit G, Altucci L, Flexor M, Ruchaud S, Lillehaug J, Raffelsberger W, Gronemeyer H, Lanotte M (1999) RAR-independent RXR signaling induces t(15;17) leukemia cell maturation. Embo J 18: 7011 - 7018

    PubMed  CAS  Google Scholar 

  • Bishop JM (1986) Oncogenes as hormone receptors. Nature 321: 112 - 113

    PubMed  CAS  Google Scholar 

  • Brown ’D, Kogan S, Lagasse E, Weissman I, Alcalay M, Pelicci PG, Atwater S, Bishop JM (1997) A PML-RARa transgene initiates murine acute promyelocytic leukemia. Proc Natl Acad Sci USA 94: 2551 - 2556

    Google Scholar 

  • Caligiuri MA, Strout MP, Gilliland DG (1997) Molecular biology of acute myeloid leukemia. Semin Oncol 24: 32 - 44

    PubMed  CAS  Google Scholar 

  • Chambon P (1996) A decade of molecular biology of retinoic acid receptors. FASEB J 10:940-954 Chen A, Licht JD, Wu Y, Hellinger N, Scher W, Waxman S (1994) Retinoic acid is required for and potentiates differentiation of acute promyelocytic leukemia cells by nonretinoid agents. Blood84: 2122 - 2129

    Google Scholar 

  • Chen G, Fernandez J, Mische S, Courey AJ (1999) A functional interaction between the histone deacetylase Rpd3 and the corepressor groucho in Drosophila development. Genes Dev 13: 22182230

    Google Scholar 

  • Chen JD, Evans RM (1995) A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature 377: 454 - 457

    PubMed  CAS  Google Scholar 

  • Chen JY, Clifford J, Zusi C, Starrett J, Tortolani D, Ostrowski J, Reczek PR, Chambon P, Gronemeyer H (1996) Two distinct actions of retinoid-receptor ligands. Nature 382: 819 - 822

    PubMed  CAS  Google Scholar 

  • Chen Z, Brand NJ, Chen A, Chen S-J, Tong J-H, Wang Z-Y, Waxman S, Zelent A (1993) Fusion between a novel Kruppel-like zinc finger gene and the retinoic acid receptor-a locus due to a variant t(11;17) translocation associated with acute promeylocytic leukaemia. Embo J 12: 1161 - 1167

    PubMed  CAS  Google Scholar 

  • Chen Z, Guidez F, Rousselot P, Agadir A, Chen S-J, Wang Z-Y, Degos L, Zelent A, Waxman S, Chomienne C (1994) PLZF-RARa fusion proteins generated from the variant t(11;17)(g23;21) translocation in acute promyelocytic leukemia inhibit ligand-dependent transactivation of wild-type retinoic acid receptors. Proc Natl Acad Sci USA 91: 1178 - 1182

    PubMed  CAS  Google Scholar 

  • Cheng GX, Zhu XH, Men XQ, Wang L, Huang QH, Jin XL, Xiong SM, Zhu J, Guo WM, Chen JQ, Xu SF, So E, Chan LC, Waxman S, Zelent A, Chen GQ, Dong S, Liu JX, Chen SJ (1999) Distinct leukemia phenotypes in transgenic mice and different corepressor interactions generated by promyelocytic leukemia variant fusion genes PLZF-RARalpha and NPM-RARalpha. Proc Natl Acad Sci USA 96: 6318 - 6323

    PubMed  CAS  Google Scholar 

  • Cook M, Gould A, Brand N, Davies J, Strutt P, Shaknovich R, Licht J, Waxman S, Chen Z, GluecksohnWaelsch S, Krumlauf R, Zelent A (1995) Expression of the zinc-finger gene PLZF at rhombomere boundaries in the vertebrate hindbrain. Proc Natl Acad Sci USA 92: 2249 - 2253

    PubMed  CAS  Google Scholar 

  • Damm K, Thompson CC, Evans RM (1989) Protein encoded by v-erbA functions as a thyroid-hormone receptor antagonist. Nature 339: 593 - 597

    PubMed  CAS  Google Scholar 

  • David G, Alland L, Hong S-H, Wong C-W, DePinho R, Dejean A (1998) Histone deacetylase associated with mSin3A mediates repression by the promyelocytic leukemia-associated PLZF protein. Oncogene 16: 2549 - 2556

    PubMed  CAS  Google Scholar 

  • de The H, Lavau C, Marchio A, Chomienne C, Degos L, Dejean A (1991) The PML-RARa fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell 66: 675 - 684

    Google Scholar 

  • Demetri GD, Fletcher CD, Mueller E, Sarraf P, Naujoks R, Campbell N, Spiegelman BM, Singer S (1999) Induction of solid tumor differentiation by the peroxisome proliferator-activated receptor-gamma ligand troglitazone in patients with liposarcoma. Proc Natl Acad Sci USA 96: 3951 - 3956

    PubMed  CAS  Google Scholar 

  • Dhordain P, Albagli O, Lin JN, Ansieau S, Quief S, Leutz A, Kerckaert J-P, Evans RM, Leprince D (1997) Corepressor SMRT binds the BTB/POZ repressing domain of the LAZ3/BCL6 oncoprotein. Proc Natl Acad Sci USA 94: 10762 - 10767

    PubMed  CAS  Google Scholar 

  • Ding W, Li YP, Nobile LM, Grills G, Carrera I, Paietta E, Tallman MS, Wiernik PH, Gallagher RE (1998) Leukemic cellular retinoic acid resistance and missense mutations in the PML-RARalpha fusion gene after relapse of acute promyelocytic leukemia from treatment with all-trans retinoic acid and intensive chemotherapy. Blood 92: 1172 - 1183

    PubMed  CAS  Google Scholar 

  • Dong S, Zhu J, Reid A, Strutt P, Guidez F, Zhong H-J, Wang Z-Y, Licht J, Waxman S, Chomienne C, Zelent A, Chen S-J (1996) Amino-terminal protein-protein interaction motif ( POZ-domain) is responsible for activities of the promyelocytic leukemia zinc finger-retinoic acid receptor-a fusion protein. Proc Natl Acad Sci USA 93: 3624-3629

    Google Scholar 

  • Doucas V, Tini M, Egan DA, Evans RM (1999) Modulation of CREB binding protein function by the promyelocytic ( PML) oncoprotein suggests a role for nuclear bodies in hormone signaling. Proc Natl Acad Sci USA 96: 2627-2632

    Google Scholar 

  • Dyck JA, Maul GG, Miller WH Jr, Chen JD, Kakizuka A, Evans RM (1994) A novel macromolecular structure is a target of the promyelocyte-retinoic acid receptor oncoprotein. Cell 76: 333 - 343

    PubMed  CAS  Google Scholar 

  • Early E, Moore MA, Kakizuka A, Nason Burchenal K, Martin P, Evans RM, Dmitrovsky E (1996) Transgenic expression of PML-RARalpha impairs myelopoiesis. Proc Natl Acad Sci USA 93: 7900 - 7904

    PubMed  CAS  Google Scholar 

  • Emiliani S, Fischle W, Van Lint C, Al-Abed Y, Verdin E (1998) Characterization of a human RPD3 ortholog, HDAC3. Proc Natl Acad Sci USA 95: 2795 - 2800

    PubMed  CAS  Google Scholar 

  • Engel I, Murre C (1999) Transcription factors in hematopoiesis. Curr Opin Genet Dev 9:575-579 Enver T, Greaves M (1998) Loops, lineage, and leukemia. Cell 94: 9 - 12

    Google Scholar 

  • Erickson P, Gao J, Chang K-S, Look T, Whisemant E, Raimondi S, Lasher R, Trujillo J, Rowley J, Drabkin H (1992) Identification of breakpoints in t(8;21) acute myelogenous leukemia and isolation of a fusion transcript, AMLI/ETO, with similarity to Drosophila segmentation gene, runt. Blood 80: 1825-1831

    Google Scholar 

  • Fears S, Gavin M, Zhang DE, Hetherington C, BenDavid Y, Rowley JD, Nucifora G (1997) Functional characterization of ETV6 and ETV6/CBFA2 in the regulation of the MCSFR proximal promoter. Proc Natl Acad Sci USA 94: 1949 - 1954

    PubMed  CAS  Google Scholar 

  • Fenrick R, Amann JM, Lutterbach B, Wang L, Westendorf JJ, Downing JR, Hiebert SW (1999) Both TEL and AML-1 Contribute Repression Domains to the t(12;21) Fusion Protein. Mol Cell Biol 19: 6566 - 6574

    PubMed  CAS  Google Scholar 

  • Fisher AL, Caudy M (1998) Groucho proteins: transcriptional corepressors for specific subsets of DNA-binding transcription factors in vertebrates and invertebrates. Genes Dev 12: 1931 - 1940

    PubMed  CAS  Google Scholar 

  • Gamou T, Kitamura E, Hosoda F, Shimizu K, Shinohara K, Hayashi Y, Nagase T, Yokoyama Y, Ohki M (1998) The partner gene of AMLI in t(16;21) myeloid malignancies is a novel member of the MTG8(ETO) family. Blood 91: 4028 - 4037

    PubMed  CAS  Google Scholar 

  • Gelmetti V, Zhang J, Fanelli M, Minucci S, Pelicci PG, Lazar MA (1998) Aberrant recruitment of the nuclear receptor corepressor-histone deacetylase complex by the acute myeloid leukemia fusion partner ETO. Mol Cell Biol 18: 7185 - 7191

    PubMed  CAS  Google Scholar 

  • Glass CK, Rosenfeld MG (2000) The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev 14: 121 - 141

    PubMed  CAS  Google Scholar 

  • Goddard AD, Borrow J, Freemont P, Solomon E (1991) Characterization of a zinc finger gene disrupted by the t(15;17) in acute promyelocytic leukemia. Science 254: 1371 - 1374

    PubMed  CAS  Google Scholar 

  • Golub TR, Barker GF, Bohlander SK, Hiebert SW, Ward DC, Bray-Ward P, Morgan E, Raimondi SC, Rowley JD, Gilliland DG (1995) Fusion of the TEL gene on 12p13 to the AMLI gene on 21q22 in acute lymphoblastic leukemia. Proc Natl Acad Sci, USA 92: 4917-4921

    Google Scholar 

  • Grignani F, DeMatteis S, Nervi C, Tomassoni L, Gelmetti V, Cioce M, Fanelli M, Ruthardt M, Ferrara FF, Zamir I, Seiser C, Grignani F, Lazar MA, Minucci S, Pelicci PG (1998) Fusion proteins of the retinoic acid receptor-alpha recruit histone deacetylase in promyelocytic leukaemia. Nature 391: 815 - 818

    PubMed  CAS  Google Scholar 

  • Grignani F, Gelmetti V, Fanelli M, Rogaia D, De Matteis S, Ferrara FF, Bonci D, Nervi C, Pelicci PG (1999) Formation of PML/RAR alpha high molecular weight nuclear complexes through the PML coiled-coil region is essential for the PML/RAR alpha-mediated retinoic acid response. Oncogene 18: 6313 - 6321

    PubMed  CAS  Google Scholar 

  • Grimwade D, Gorman P, Duprez E, Howe K, Langabeer S, Oliver F, Walker H, Culligan D, Waters J, Pomfret M, Goldstone A, Burnett A, Freemont P, Sheer D, Solomon E (1997) Characterization of cryptic rearrangements and variant translocations in acute promyelocytic leukemia. Blood 90: 48764885

    Google Scholar 

  • Grozinger CM, Hassig CA, Schreiber SL (1999) Three proteins define a class of human histone deacetylases related to yeast Hdalp. Proc Natl Acad Sci USA 96: 4868 - 4873

    PubMed  CAS  Google Scholar 

  • Grunstein M (1997) Histone acetylation in chromatin structure and transcription. Nature 389: 349 - 352

    PubMed  CAS  Google Scholar 

  • Guidez F, Ivins S, Zhu J, Soderstrom M, Waxman S, Zelent A (1998) Reduced retinoic acid-sensitivities of nuclear receptor co-repressor binding to PML- and PLZF-RARa underlie molecular pathogenesis and treatment of acute promyelocytic leukemia. Blood 91: 2634 - 2642

    PubMed  CAS  Google Scholar 

  • Guidez F, Petrie K, Ford AM, Lu H, Bennett CA, MacGregor A, Hannemann J, Ito Y, Ghysdael J, Greaves M, Wiedemann L, Zelent A (1999) Childhood leukemia associated TEL-AML1 oncoprotein binds nuclear receptor co-repressor N-CoR and functions as a histone deacetylase dependent transcriptional repressor. Blood 94: 693a

    Google Scholar 

  • Hassig CA, Fleischer TC, Billin AN, Schreiber SL, Ayer DE (1997) Histone deacetylase activity is required for full transcriptional repression by mSin3A. Cell 89: 341 - 347

    PubMed  CAS  Google Scholar 

  • Hassig CA, Schreiber SA (1998) Nuclear histone acetylases and deacetylases and transcriptional regulation. Curr Opin Chem Biol 1: 300 - 308

    Google Scholar 

  • He L-Z, Guidez F, Tribioli C, Peruzzi D, Ruthardt M, Zelent A, Pandolfi PP (1998) Distinct interactions of PML-RARa with transcriptional co-repressors determine differential responses to retinoic acid in APL. Nat Genet 18: 126 135

    Google Scholar 

  • He LZ, Tribioli C, Rivi R, Peruzzi D, Pelicci PG, Soares V, Cattoretti G, Pandolfi PP (1997) Acute leukemia with promyelocytic features in PML/RARalpha transgenic mice. Proc Natl Acad Sci USA 94: 5302 - 5307

    PubMed  CAS  Google Scholar 

  • Heinzel T, Lavinsky RM, Mullen TM, Soderstrom M, Laherty CD, Torchia J, Yang WM, Brard G, Ngo SD, Davie JR, Seto E, Eisenman RN, Rose DW, Glass CK, Rosenfeld MG (1997) A complex containing N-CoR, mSin3 and histone deacetylase mediates transcriptional repression. Nature 387: 43 - 48

    PubMed  CAS  Google Scholar 

  • Hernandez-Munain C, Krangel MS (1994) Regulation of the T-cell receptor delta enhancer by functional cooperation between c-Myb and core-binding factors. Mol Cell Biol 14: 473 - 483

    PubMed  CAS  Google Scholar 

  • Hiebert SW, Downing JR, Lenny N, Meyers S (1996) Transcriptional regulation by the t(8;21) fusion protein, AML-1/ETO. Curr Top Microbiol Immunol 211: 253 - 258

    PubMed  CAS  Google Scholar 

  • Hiebert SW, Sun W, Davies JN, Golub T, Shurtleff S, Buijs A, Downing JR, Grosveld G, Roussel MF, Gilliland DG, Lenny N, Meyers S (1996) The t(12;21) translocation converts AML-1B from an activator to a repressor of transcription. Mol Cell Biol 16: 1349 - 1355

    PubMed  CAS  Google Scholar 

  • Hoatlin ME, Zhi Y, Ball H, Silvey K, Melnick A, Stone S, Arai S, Hawe N, Owen G, Zelent A, Licht J (1999) A novel BTB/POZ transcriptional repressor protein interacts with the Fanconi anemia group C protein and PLZF. Blood 94: 3737 - 3747

    PubMed  CAS  Google Scholar 

  • Hodges RE, Sauberlich HE, Canham JE, Wallace DL, Rucker RB, Mejia LA, Mohanram M (1978) Hematopoietic studies in vitamin A deficiency. Am J Clin Nutr 31: 876 - 885

    PubMed  CAS  Google Scholar 

  • Hong SH, David G, Wong CW, Dejean A, Privalsky ML (1997) SMRT corepressor interacts with PLZF and with the PML-retinoic acid receptor a ( RARa) and PLZF-RARa oncoproteins associated with acute promyelocytic leukemia. Proc Natl Acad Sci USA 94: 9028-9033

    Google Scholar 

  • Horlein Ai, Naar AM, Heinzel T, Torchia J, Gloss B, Kurokawa R, Ryan A, Kamei Y, Soderstrom M, Glass CK, Rosenfeld M (1995) Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature 377: 397 - 404

    Google Scholar 

  • Horvai AE, Xu L, Korzus E, Brard G, Kalafus D, Mullen TM, Rose DW, Rosenfeld MG, Glass CK (1997) Nuclear integration of JAK/STAT and Ras/AP-1 signaling by CBP and p300. Proc Natl Acad Sci USA 94: 1074 - 1079

    PubMed  CAS  Google Scholar 

  • Kadonaga JT (1998) Eukaryotic transcription: an interlaced network of transcription factors and chromatin-modifying machines. Cell 92: 307 - 313

    PubMed  CAS  Google Scholar 

  • Kakizuka A, Miller WH, Umesono K, Warrell RP, Frankel SR, Murty VVVS, Dimitrovsky E, Evans RM (1991) Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RARa with a novel putative transcription factor, PML. Cell 66: 663-674

    Google Scholar 

  • Kamei Y, Xu L, Heinzel T, Torchia J, Kurokawa R, Gloss B, Lin SC, Heyman RA, Rose DW, Glass CK, Rosenfeld MG (1996) A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell 85: 403 - 414

    PubMed  CAS  Google Scholar 

  • Kastner P, Brand N, Krust A, Leroy P, Mendelsohn C, Petkovich M, Zelent A, Chambon P (1991) Retinoic acid nuclear receptors. In: Hinchliffe JRea (ed) Developmental patterning of the vertebrate limb. Plenum Press, New York, pp 75 88

    Google Scholar 

  • Kastner P, Perez A, Lutz Y, Rochette-Egly C, Gaub M-P, Durand B, Lanotte M, Berger R, Chambon P (1992) Structure, localization and transcriptional properties of two classes of retinoic acid receptor a fusion proteins in acute promyelocytic leukemia (APL): structural similarities with a new family of oncoproteins. Embo J 11: 629 - 642

    PubMed  CAS  Google Scholar 

  • Kerckaert J-P, Deweindt C, Tilly H, Quief S, Lecocq G, Bastard C (1993) LAZ3, a novel zinc-finger encoding gene, is disrupted by recurring chromosome 3q27 translocations in human lymphomas. Nat Genet 5: 66 - 70

    PubMed  CAS  Google Scholar 

  • Kijima M, Yoshida M, Sugita K, Horinouchi S, Beppu T (1993) Trapoxin, an antitumor cyclic tetra-peptide, is an irreversible inhibitor of mammalian histone deacetylase. J Biol Chem 268: 22429 - 22435

    PubMed  CAS  Google Scholar 

  • Kingston RE, Bunker CA, Imbalzano AN (1996) Repression and activation by multiprotein complexes that alter chromatin structure. Genes Dev 10: 905 - 920

    PubMed  CAS  Google Scholar 

  • Kitabayashi I, Yokoyama A, Shimizu K, Ohki M (1998) Interaction and functional cooperation of the leukemia-associated factors AML1 and p300 in myeloid cell differentiation. Embo J 17: 2994 - 3004

    PubMed  CAS  Google Scholar 

  • Koken MH, Daniel MT, Gianni M, Zelent A, Licht J, Buzyn A, Minard P, Degos L, Varet B, de The H (1999) Retinoic acid, but not arsenic trioxide, degrades the PLZF/RARalpha fusion protein, without inducing terminal differentiation or apoptosis, in a RA-therapy resistant t(11;17)(g23;g21) APL patient. Oncogene 18: 1113 - 1118

    CAS  Google Scholar 

  • Koken MHM, Puvion-Dutilleul F, Guillemin MC, Viron A, Linares-Cruz G, Stuurman N, de Jong L, Szostecki C, Clavo F, Chomienne C, Degos L, Puvion E, de The H (1994) The t(15;17) translocation alters a nuclear body in a retinoic acid-reversible fashion. Embo J 13: 1073 - 1083

    CAS  Google Scholar 

  • Koken MHM, Reid A, Quignon F, Chelbi-Alix MK, Davies JM, Kabarowski JHS, Zhu J, Dong S, Chen S-J, Chen Z, Tan CC, Licht J, Waxman S, de The H, Zelent A (1997) Leukemia associated retinoic acid receptor a fusion partners, PML and PLZF, heterodimerize and colocalize to nuclear bodies. Proc Natl Acad Sci USA 94: 10255-10260

    Google Scholar 

  • Laherty CD, Yang WM, Sun JM, Davie JR, Seto E, Eisenman RN (1997) Histone deacetylasesassociated with the mSin3 corepressor mediate Mad transcriptional repression. Cell 89: 349 - 356

    PubMed  CAS  Google Scholar 

  • LaMorte VJ, Dyck JA, Ochs RL, Evans RM (1998) Localization of nascent RNA and CREB bindingprotein with the PML-containing nuclear body. Proc Natl Acad Sci USA 95: 4991 - 4996

    Google Scholar 

  • Lee DY, Hayes JJ, Pruss D, Wolfe AP (1993) A positive role for histone acetylation in transcriptionfactor access to nucleosomal DNA. Cell 72: 73 - 84

    PubMed  CAS  Google Scholar 

  • Leid M, Kastner P, Chambon P (1992) Multiplicity generates diversity in the retinoic acid signalling pathways. Trends Biochem Sci 17: 427 - 433

    PubMed  CAS  Google Scholar 

  • Leid M, Kastner P, Lyons R, Nakshatri H, Saunders M, Zacharewski T, Chen J-Y, Staub A, Gamier J-M, Mader S, Chambon P (1992) Purification, cloning, and RXR identity of the HeLa cell factor with which RAR or TR heterodimerizes to bind target sequences efficiently. Cell 68: 377 - 395

    PubMed  CAS  Google Scholar 

  • Levanon D, Goldstein RE, Bernstein Y, Tang H, Goldenberg D, Stifani S, Paroush Z, Groner Y (1998) Transcriptional repression by AMLI and LEF-1 is mediated by the TLE/Groucho corepressors. Proc Natl Acad Sci USA 95: 11590 - 11595

    PubMed  CAS  Google Scholar 

  • Licht JD, Chomienne C, Goy A, Chen A, Scott AA, Head DR, Michaux JL, DeBlasio A, Miller W Jr, Zelenetz AD, Willman CL, Chen Z, Chen S-J, Zelent A, Macintyre E, Vail A, Cortes J, Kantarjian H, Waxman S (1995) Clinical and molecular characterization of a rare syndrome of acute promyelocytic leukemia associated with translocation (11;17). Blood 85: 1083 - 1094

    PubMed  CAS  Google Scholar 

  • Lin R, Nagy L, Inoue S, Shao W, Miller W, Jr Evans R (1998) Role of histone deacetylase complex in acute promyelocytic leukaemia. Nature 391: 811 - 814

    PubMed  CAS  Google Scholar 

  • Liu P, Tarie SA, Hajra A, Claxton DF, Marlton P, Freedman M, Siciliano MJ (1993) Fusion between transcription factor CBFß/PEBP213 and a myosin heavy chain in acute myeloid leukemia. Science 261: 1041 - 1044

    PubMed  CAS  Google Scholar 

  • Look A (1997) Oncogenic transcription factors in the human acute leukemias. Science 278:1059-1064 Lutterbach B, Hou Y, Durst KL, Hiebert SW (1999) The inv(16) encodes an acute myeloid leukemia 1 transcriptional corepressor. Proc Natl Acad Sci USA 96: 12822 - 12827

    Google Scholar 

  • Lutterbach B, Westendorf JJ, Linggi B, Isaac S, Seto E, Hiebert SW (2000) A mechanism of repression by acute myeloid leukemia-1, the target of multiple chromosomal translocations in acute leukemia. J Biol Chem 275: 651 - 656

    PubMed  CAS  Google Scholar 

  • Lutterbach B, Westendorf JJ, Linggi B, Patten A, Moniwa M, Davie JR, Huynh KD, Bardwell VJ, Lavinsky RM, Rosenfeld MG, Glass C, Seto E, Hiebert SW (1998) ETO, a target of t(8;21) in acute leukemia, interacts with the N-CoR and mSin3 corepressors. Mol Cell Biol 18: 7176 - 7184

    PubMed  CAS  Google Scholar 

  • Mangelsdorf DJ, Borgmeyer U, Heyman RA, Zhou JY, Ong ES, Oro AE, Kakizuka A, Evans RM (1992) Characterization of three RXR genes that mediate the action of 9-cis retinoic acid. Genes Dev 6: 329 - 344

    PubMed  CAS  Google Scholar 

  • Mangelsdorf DJ, Evans RM (1995) The RXR heterodimers and orphan receptors. Cell 83:841-850 Mehta K, McQueen T, Manshouri T, Andreeff M, Collins S, Albitar M (1997) Involvement of retinoic acid receptor-a-mediated signaling pathway in induction of CD38 cell-surface antigen. Blood 89: 3607 - 3614

    Google Scholar 

  • Meyers S, Downing JR, Hiebert SW (1993) Identification of AML-1 and (8;21) translocation protein (AML-1/ETO) as sequence-specific DNA-binding proteins: the runt homology domain is required for DNA binding and protein-protein interactions. Mol Cell Biol 13: 6336 - 6345

    PubMed  CAS  Google Scholar 

  • Miska EA, Karlsson C, Langley E, Nielsen SJ, Pines J, Kouzarides T (1999) HDAC4 deacetylase associates with and represses the MEF2 transcription factor. Embo J 18: 5099 - 5107

    PubMed  CAS  Google Scholar 

  • Mitani K, Ogawa S, Tanaka T, Miyoshi H, Kurokawa M, Mano H, Yazaki Y, Ohki M, Hirai H (1994) Generation of the AMLI-EVI-1 fusion gene in t(3;21)(q26;q22) causes blastic crisis in chronic myelocytic leukemia. Embo J 13: 504 - 510

    PubMed  CAS  Google Scholar 

  • Miyoshi H, Shimizu K, Kozu T, Maseki N, Kaneko Y, Ohki M (1991) t(8;21) breakpoints in chromosome 21 in acute myeloid leukemia are clustered within a limited region of a single gene, AML1. Proc Natl Acad Sci USA 88: 10431 - 10434

    Google Scholar 

  • Nagy L, Kao HY, Chakravarti D, Lin RJ, Hassig CA, Ayer DE, Schreiber SL, Evans RM (1997) Nuclear receptor repression mediated by a complex containing SMRT, mSin3A, and histone deacetylase. Cell 89: 373 - 380

    PubMed  CAS  Google Scholar 

  • Ogawa E, Inuzuka M, Maruyama M, Satake M, Naito-Fujimoto M, Ito Y, Shigesada K (1993) Molecular cloning and characterization of PEBP2 beta, the heterodimeric partner of a novel Drosophila runt-related DNA binding protein PEBP2 alpha. Virology 194: 314 - 331

    PubMed  CAS  Google Scholar 

  • Okada H, Watanabe T, Niki M, Takano H, Chiba N, Yanai N, Tani K, Hibino H, Asano S, Mucenski ML, Ito Y, Noda T, Satake M (1998) AMLI(-/-) embryos do not express certain hematopoiesisrelated gene transcripts including those of the PU.1 gene. Oncogene 17: 2287 - 2293

    PubMed  CAS  Google Scholar 

  • Okuda T, van Deursen J, Hiebert SW, Grosveld G, Downing JR (1996) AMLI, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 84: 321 - 330

    PubMed  CAS  Google Scholar 

  • Onate SA, Tsai SY, Tsai MJ, Omalley BW (1995) Sequence and Characterization Of a Coactivator For the Steroid-Hormone Receptor Superfamily. Science 270: 1354 - 1357

    PubMed  CAS  Google Scholar 

  • Orkin SH (1996) Development of the hematopoietic system. Curr Opin Genet Dev 6: 597 - 602

    PubMed  CAS  Google Scholar 

  • Osato M, Asou N, Abdalla E, Hoshino K, Yamasaki H, Okubo T, Suzushima H, Takatsuki K, Kanno T, Shigesada K, Ito Y (1999) Biallelic and heterozygous point mutations in the runt domain of the AMLI/PEBP2alphaB gene associated with myeloblastic leukemias. Blood 93: 1817 - 1824

    PubMed  CAS  Google Scholar 

  • Pandolfi PP, Grignani F, Alcalay M, Mencarelli A, Biondi A, Lo Coco F, Grignani F, Pelicci PG (1991) Structure and origin of the acute promyelocytic leukemia myl/RARa eDNA and characterization of its retinoid-binding and transactivation properties. Oncogene 6: 1285 - 1292

    PubMed  CAS  Google Scholar 

  • Perez A, Kastner P, Sethi S, Lutz Y, Reibel C, Chambon P (1993) PMLRAR homodimers: distinct DNA binding properties and heteromeric interactions with RXR. Embo J 12: 3171 - 3182

    PubMed  CAS  Google Scholar 

  • Quignon F, De Bels F, Koken M, Feunteun J, Ameisen JC, de The H (1998) PML induces a novel caspase-independent death process. Nat Genet 20: 259 - 265

    CAS  Google Scholar 

  • Redner R, Rush E, Schlesinger K, Pollock S, Watkins S (1997) The t(5;17) APL fusion protein NPMRAR does not alter PML localization. Blood 90: 1431

    Google Scholar 

  • Redner RL, Rush EA, Faas S, Rudert WA, Corey SJ (1996) The t(5;17) variant of acute promyelocytic leukemia expresses a nucleophosmin-retinoic acid receptor fusion. Blood 87: 882 - 886

    PubMed  CAS  Google Scholar 

  • Reid A, Gould A, Brand N, Cook M, Strutt P, Li J, Licht J, Waxman S, Krumlauf R, Zelent A (1995) Leukemia translocation gene, PLZF, is expressed with a speckled nuclear pattern in early hematopoietic progenitors. Blood 86: 4544 4552

    Google Scholar 

  • Richon VM, Emiliani S, Verdin E, Webb Y, Breslow R, Rifkind RA, Marks PA (1998) A class of hybrid polar inducers of transformed cell differentiation inhibits histone deacetylases. Proc Natl Acad Sci USA 95: 3003 - 3007

    PubMed  CAS  Google Scholar 

  • Richon VM, Webb Y, Merger R, Sheppard T, Jursic B, Ngo L, Civoli F, Breslow R, Rifkind RA, Marks PA (1996) Second generation hybrid polar compounds are potent inducers of transformed cell differentiation. Proc Natl Acad Sci USA 93: 5705 - 5708

    PubMed  CAS  Google Scholar 

  • Robertson KA, Emami B, Collins SJ (1992) Retinoic acid-resistant HL-60R cells harbor a point mutation in the retinoic acid receptor ligand-binding domain that confers dominant negative activity. Blood 80: 1885 - 1889

    PubMed  CAS  Google Scholar 

  • Romana SP, Mauchauffe M, Le Coniat M, Chumakov I, Le Pastier D, Berger R, Bernard OA (1995) The t(12;21) of acute lymphoblastic leukemia results in a tel-AMLI gene fusion. Blood 85: 36623670

    Google Scholar 

  • Rosen ED, Sarraf P, Troy AE, Bradwin G, Moore K, Milstone DS, Spiegelman BM, Mortensen RM (1999) PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro. Mol Cell 4: 611 - 617

    PubMed  CAS  Google Scholar 

  • Roulston D, Espinosa R, Nucifora G, Larson RA, Le Beau MM, Rowley JD (1998) CBFA2 (AMLI) translocations with novel partner chromosomes in myeloid leukemias: association with prior therapy. Blood 92: 2879 - 2885

    PubMed  CAS  Google Scholar 

  • Rowley JD (1998) The critical role of chromosome translocations in human leukemias. Ann Rev Genet 32: 495 - 519

    PubMed  CAS  Google Scholar 

  • Shaknovich R, Yeyati PL, Ivins S, Melnick A, Lempert C, Waxman S, Zelent A, Licht JD (1998) The promyelocytic leukemia zinc finger protein affects myeloid cell growth, differentiation, and apoptosis. Mol Cell Biol 18: 5533 - 5545

    PubMed  CAS  Google Scholar 

  • Shivdasani RA, Orkin SH (1996) The transcriptional control of hematopoiesis. Blood 87: 4025 - 4039

    PubMed  CAS  Google Scholar 

  • Song WJ, Sullivan MG, Legare RD, Hutchings S, Tan X, Kufrin D, Ratajczak J, Resende IC, Haworth C, Hock R, Loh M, Felix C, Roy DC, Busque L, Kurnit D, Willman C, Gewirtz AM, Speck NA, Bushweller JH, Li FP, Gardiner K, Poncz M, Maris JM, Gilliland DG (1999) Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nat Genet 23: 166 - 175

    PubMed  CAS  Google Scholar 

  • Spencer TE, Jenster G, Burcin MM, Allis CD, Zhou J, Mizzen CA, McKenna NJ, Onate SA, Tsai SY, Tsai M-J, O’Malley BW (1997) Steroid receptor coactivator-1 is a histone acetyltransferase. Nature 389: 194 - 198

    PubMed  CAS  Google Scholar 

  • Stone RM, Mayer RJ (1990) The unique aspects of acute promyelocytic leukaemia. J Clin Oncol 8: 1913 - 1921

    PubMed  CAS  Google Scholar 

  • Takahashi A, Satake M, Yamaguchi-Iwai Y, Bae S, Lu J, Maruyama M, Zhang Y, Oka H, Arai N, Arai K, Ito Y (1995) Positive and negative regulation of granulocyte-macrophage colony-stimulating factor promote activity by AMLI-related transcription factor, PEBP2. Blood 86: 607 - 616

    PubMed  CAS  Google Scholar 

  • Tanaka T, Mitani K, Kurokawa M, Ogawa S, Tanaka K, Nishida J, Yazaki Y, Shibata Y, Hirai H (1995) Dual functions of the AML 1/Evi-1 chimeric protein in the mechanism of leukemogenesis in t(3;21) leukemias. Mol Cell Biol 15: 2383 - 2392

    PubMed  CAS  Google Scholar 

  • Taunton J, Hassig CA, Schreiber SL (1996) A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 272: 408 - 411

    PubMed  CAS  Google Scholar 

  • Tenen DG, Hromas R, Licht JD, Zhang DE (1997) Transcription factors, normal myeloid development, and leukemia. Blood 90: 489 - 519

    PubMed  CAS  Google Scholar 

  • Tsai S, Collins SJ (1993) A dominant negative retinoic acid receptor blocks neutrophil differentiation at the promyelocyte stage. Proc Natl Acad Sci USA 90: 7153 - 7157

    PubMed  CAS  Google Scholar 

  • Uchida H, Zhang J, Nimer SD (1997) AMLIA and AMLIB can transactivate the human IL-3 promoter. J Immunol 158: 2251 - 2258

    PubMed  CAS  Google Scholar 

  • Vettese-Dadey M, Walter P, Chen H, Juan LJ, Workman JL (1994) Role of the histone amino termini in facilitated binding of a transcription factor, GAL4-AH, to nucleosome cores. Mol Cell Biol 14: 970 - 981

    PubMed  CAS  Google Scholar 

  • Vidali G, Boffa LC, Bradbury EM, Allfrey VG (1978) Butyrate suppression of histone deacetylation leads to accumulation of multiacetylated forms of histones H3 and H4 and increased DNase I sensitivity of the associated DNA sequences. Proc Natl Acad Sci USA 75: 2239 - 2243

    PubMed  CAS  Google Scholar 

  • Voegel JJ, Heine MJS, Zechel C, Chambon P, Gronemeyer H (1996) TIF2, a 160kDa transcriptional mediator for the ligand-dependent activation function AF-2 of nuclear receptors. Embo J 15: 3667 - 3675

    PubMed  CAS  Google Scholar 

  • Wang AH, Bertos NR, Vezmar M, Pelletier N, Crosato M, Heng HH, Th’ng J, Han J, Yang XJ (1999) HDAC4, a human histone deacetylase related to yeast HDA1, is a transcriptional corepressor. Mol Cell Biol 19: 7816 - 7827

    PubMed  CAS  Google Scholar 

  • Wang H, Stillman DJ (1993) Transcriptional repression in Saccharomyces cerevisiae by a SIN3-LexA fusion protein. Mol Cell Biol 13: 1805 - 1814

    PubMed  CAS  Google Scholar 

  • Wang J, Hoshino T, Redner RL, Kajigaya S, Liu JM (1998) ETO, fusion partner in t(8;21) acute myeloid leukemia, represses transcription by interaction with the human N-CoR/mSin3/HDACI complex. Proc Natl Acad Sci USA 95: 10860 - 10865

    PubMed  CAS  Google Scholar 

  • Wang J, Saunthararajah Y, Redner RL, Liu JM (1999) Inhibitors of histone deacetylase relieve ETOmediated repression and induce differentiation of AML1-ETO leukemia cells. Cancer Res 59: 27662769

    Google Scholar 

  • Wang Q, Stacy T, Miller JD, Lewis AF, Gu TL, Huang X, Bushweller JH, Bories JC, Alt FW, Ryan G, Liu PP, Wynshaw Boris A, Binder M, Marin Padilla M, Sharpe AH, Speck NA (1996) The CBFß subunit is essential for CBFa2 (AML1) function in vivo. Cell 87:697-708Wang S, Wang Q, Crute BE, Melnikova IN, Keller SR, Speck NA (1993) Cloning and characterization of subunits of the T-cell receptor and murine leukemia virus enhancer core-binding factor. Mol Cell Biol 13: 3324 - 3339

    Google Scholar 

  • Wang ZG, Delva L, Gaboli M, Rivi R, Giorgio M, CordonCardo C, Grosveld F, Pandolfi PP (1998) Role of PML in cell growth and the retinoic acid pathway. Science 279: 1547 - 1551

    PubMed  CAS  Google Scholar 

  • Warrell RP Jr (1993) Retinoid resistance in acute promyelocytic leukemia: new mechanisms, strategies and implications. Blood 82: 1949 - 1953

    PubMed  CAS  Google Scholar 

  • Warrell RP Jr, He LZ, Richon V, Calleja E, Pandolfi PP (1998) Therapeutic targeting of transcription in acute promyelocytic leukemia by use of an inhibitor of histone deacetylase. J Natl Cancer Inst 90: 1621 - 1625

    PubMed  CAS  Google Scholar 

  • Weis K, Rambaud S, Lavau C, Jansen J, Carvalho T, Carmo-Fonseca M, Lamond A, Dejean A (1994) Retinoic acid regulates aberrant nuclear localization of PML-RARa in acute promyelocytic leukemia cells. Cell 76: 345 - 356

    PubMed  CAS  Google Scholar 

  • Wells RA, Catzavelos C, Kamel-Reid S (1997) Fusion of retinoic acid receptor a to NuMA, the mitotic apparatus protein, by a variant translocation in acute promyelocytic leukaemia. Nat Genet 17: 109 - 113

    PubMed  CAS  Google Scholar 

  • Wolbach SB, Howe PR (1925) Tissue changes following deprivation of fat-soluble A vitamin. J Exp Med 42: 753 - 777

    PubMed  CAS  Google Scholar 

  • Wong CW, Privalsky ML (1998) Transcriptional repression by the SMRT-mSin3 corepressor: multiple interactions, multiple mechanisms, and a potential role for TFIIB. Mol Cell Biol 18: 5500 - 5510

    PubMed  CAS  Google Scholar 

  • Ye BH, Lista F, Lo Coco F, Knowles DM, Offit K, Chaganti RSK, Dalla-Favera R (1993) Alterations of a zinc finger-encoding gene, BCL-6, in diffuse large-cell lymphoma. Science 262: 747 - 750

    PubMed  CAS  Google Scholar 

  • Yoshida M, Horinouchi S, Beppu T (1995) Trichostatin A and trapoxin: novel chemical probes for the role of histone acetylation in chromatin structure and function. Bioessays 17: 423 - 430

    PubMed  CAS  Google Scholar 

  • Zelent A, Krust A, Petkovich M, Kastner P, Chambon P (1989) Cloning of murine a and 13 retinoic acid receptors and a novel receptor y predominantly expressed in skin. Nature 339: 714 - 717

    PubMed  CAS  Google Scholar 

  • Zelent A, Zhu J, Lanotte M, Gallagher R, Waxman S, Heyworth CM, Enver T (1997) Differential expression of retinoid receptors during multilineage differentiation of haemopoietic progenitor cells-role of the RARa2 isoform in normal granulopoiesis and leukaemia. Blood 90: 186

    Google Scholar 

  • Zenke M, Munoz A, Sap J, Vennstrom B, Beug H (1990) v-erbA oncogene activation entails the loss of hormone-dependent regulator activity of c-erbA. Cell 61: 1035 - 1049

    Google Scholar 

  • Zhong S, Delva L, Rachez C, Cenciarelli C, Gandini D, Zhang H, Kalantry S, Freedman LP, Pandolfi PP (1999) A RA-dependent, tumour-growth suppressive transcription complex is the target of the PML-RARalpha and T18 oncoproteins. Nat Genet 23: 287 - 295

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Guidez, F., Zelent, A. (2001). Role of Nuclear Receptor Corepressors in Leukemogenesis. In: Privalsky, M.L. (eds) Transcriptional Corepressors: Mediators of Eukaryotic Gene Repression. Current Topics in Microbiology and Immunology, vol 254. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10595-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10595-5_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08709-7

  • Online ISBN: 978-3-662-10595-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics