Skip to main content

Role of Histone Deacetylase Complexes in the Regulation of Chromatin Metabolism

  • Chapter
Transcriptional Corepressors: Mediators of Eukaryotic Gene Repression

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 254))

Abstract

The pattern of acetylation of conserved lysines at the N-termini of four nucleosomal histone proteins plays an important role in chromatin metabolism, in particular, chromatin assembly, establishment of silenced heterochromatin regions, and local repression of active euchromatin promoters. In this review, we describe from a biochemical and genetic point of view, recent progress in the characterization of enzymes that carry out histone deacetylation. We show that histone deacetylase enzymes display several features that are common among enzymes involved in chromatin metabolism, particularly, apparent redundancy, an essential multisubunit composition, and evolutionary conservation and diversity. We emphasize the role of histone deacetylases in chromatin metabolism and their importance for cell proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aasland R, Gibson TJ, Stewart AF (1995) The PHD finger: implications for chromatin-mediated transcriptional regulation. Trends Biochem Sci 20: 56–59

    Article  PubMed  CAS  Google Scholar 

  • Aasland R (1996) The SANT domain: a putative DNA-binding domain in the SWI-SNF and ADA complexes, the transcriptional co-repressor N-CoR and TFIIIB. Trends Biochem Sci 21: 87–88

    PubMed  CAS  Google Scholar 

  • Ayer DE, Lawrence QA, Eisenman RN (1995) Mad-Max transcriptional repression is mediated by ternary complex formation with mammalian homologs of the yeast repressor Sin3. Cell 80: 767–776

    Article  PubMed  CAS  Google Scholar 

  • Braunstein M, Sobel RE, Allis CD, Turner BM, Broach JR (1996) Efficient transcriptional silencing in Saccharomyces cerevisiae requires a heterochromatin histone acetylation pattern. Mol Cell Biol 16: 4349–4356

    PubMed  CAS  Google Scholar 

  • Carmen AA, Rundlett SE, Grunstein M (1996) HDAI and HDA3 are components of a yeast histone deacetylase ( HDA) complex. J Biol Chem 271: 15837–15844

    Google Scholar 

  • Carmen AA, Griffin PR, Calaycay JR, Rundlett SE, Suka Y. Grunstein M (1999) Yeast HOS3 forms a novel trichostatin A-insensitive homodimer with intrinsic histone deacetylase activity. Proc Natl Acad Sci USA 96: 12356–12361

    Google Scholar 

  • Cavalli G, Paro R (1998) Chromo-domain proteins: linking chromatin structure to epigenic regulation. Curr Opin Cell Biol 10: 354–360

    Article  PubMed  CAS  Google Scholar 

  • Corona DF, Langst G, Clapier CR, Bonte EJ, Ferrari S, Tamkun JW, Becker PB (1999) ISWI is an ATP-dependent nucleosome remodelling factor. Mol Cell 3: 239–245

    Article  PubMed  CAS  Google Scholar 

  • Cowell IG, Austin CA (1997) Self-association of chromo domain peptides. Biochim Biophys Acta 1337: 198–206

    Article  PubMed  CAS  Google Scholar 

  • DeRubertis F, Kadosh D, Henchoz S, Pauli D, Reuter G, Struhl K, Spierer P (1996) The histone deacetylase RPD3 counteracts genomic silencing in Drosophila and yeast. Nature 384: 589–591

    Article  CAS  Google Scholar 

  • Eisen JA, Sweder KS, Hanawalt PC (1995) Evolution of the SNF2 family of proteins: subfamilies with distinct sequences and functions. Nucleic Acids Res 23: 2715–2723

    Article  PubMed  CAS  Google Scholar 

  • Ekwall K, Olsson T, Turner BM, Cranston G, Allshire RC (1997) Transient inhibition of histone deacetylation alters the structural and functional imprint at fission yeast centromeres. Cell 91: 1021–1032

    Article  PubMed  CAS  Google Scholar 

  • Finnin MS, Donigian JR, Cohen A, Richon VM, Rifkind RA, Marks PA, Breslow R, Pavletich NP (1999) Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature 401: 188–193

    Article  PubMed  CAS  Google Scholar 

  • Fischle W, Emiliani S, Hendzel MJ, Nagase T, Nomura N, Voelter W, Verdin E (1999) A new family of human histone deacetylases related to Saccharomyces cerevisiae HDAIp. J Biol Chem 274: 11713–11720

    Article  PubMed  CAS  Google Scholar 

  • Grewal SI, Bonaduce MJ, Klar Ai (1998) Histone deacetylase homologs regulate epigenetic inheritance of transcriptional silencing and chromosome segregation in fission yeast. Genetics 150: 563–576

    PubMed  CAS  Google Scholar 

  • Grozinger CM, Hassig CA, Schreiber SL (1999) Three proteins define a class of human histone deacetylases related to yeast Hdalp. Proc Natl Acad Sci USA 96: 4868–4873

    Article  PubMed  CAS  Google Scholar 

  • Hamiche A, Sandaltzopoulos R, Gdula DA, Wu C (1999) ATP-Dependent Histone Octamer Sliding Mediated by the Chromatin Remodeling Complex NURF. 97: 833–842

    CAS  Google Scholar 

  • Harper SE, Qiu Y, Sharp PA (1996) Sin3 corepressor function in Myc-induced transcription and transformation. Proc Natl Acad Sci USA 93: 8536–8540

    Article  PubMed  CAS  Google Scholar 

  • Hassig CA, Fleischer TC, Billin AN, Schreiber SL, Ayer DE (1997) Histone deacetylase activity is required for full transcriptional repression by mSin3A. Cell 89: 341–347

    Article  PubMed  CAS  Google Scholar 

  • Hassig CA, Tong JK, Fleischer TC, Owa T, Grable PG, Ayer DE, Schreiber SL (1998) A role for histone deacetylase activity in HDACI-mediated transcriptional repression 95: 3519–3524

    CAS  Google Scholar 

  • Hendrich B, Bird A (1998) Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol Cell Biol 18: 6538–6547

    PubMed  CAS  Google Scholar 

  • Ito T, Bulger M, Pazin MJ, Kobayashi R, Kadonaga JT (1997) ACF, an ISWI-containing and ATP-utilizing chromatin assembly and remodelling factor. Cell 90: 145–155

    Article  PubMed  CAS  Google Scholar 

  • Jeppesen P, Turner BM (1993) The inactive X chromosome in female mammals is distinguished by a lack of histone H4 acetylation, a cytogenetic marker for gene expression. Cell 74: 281–289

    Article  PubMed  CAS  Google Scholar 

  • Kadosh D, Struhl K (1997) Repression by Ume6 involves recruitment of a complex containing Sin3 corepressor and Rpd3 histone deacetylase to target promoters. Cell 89: 365–371

    Article  PubMed  CAS  Google Scholar 

  • Kadosh D, Struhl K (1998) Histone deacetylase activity of Rpd3 is important for transcriptional repression in vivo. Genes Dev 12: 797–805

    Article  PubMed  CAS  Google Scholar 

  • Kao H-Y, Downes M, Ordentlich P, Evans RM (2000) Isolation of a novel histone deacetylase reveals that class I and class II deacetylases promote SMRT-mediated repression. Genes Dev 14: 55–66

    PubMed  CAS  Google Scholar 

  • Kasten MM, Ayer DE, Stillman DJ (1996) SIN3-dependent transcriptional repression by interaction with the Madl DNA binding protein. Mol Cell Biol 16: 4215–4221

    PubMed  CAS  Google Scholar 

  • Kasten MM, Dorland S, Stillman DJ (1997) A large protein complex containing the yeast Sin3p and Rpd3p transcriptional regulators. Mol Cell Biol 17: 2852–4858

    Google Scholar 

  • Kaufman PD, Kobayashi R, Kessler N, Stillman B (1995) The p150 and p60 subunits of chromatin assembly factor l: a molecular link between newly synthesized histones and DNA replication. Cell 81: 1105–1114

    Article  PubMed  CAS  Google Scholar 

  • Kaufman PD, Kobayashi R, Stillman B (1997) Ultraviolet radiation sensitivity and reduction of telomeric silencing in Saccharomyces cerevisiae cells lacking chromatin assembly factor-1. Genes Dev 11: 345–357

    Article  PubMed  CAS  Google Scholar 

  • Kwon H, Imbalzano AN, Khavari PA, Kingston RE, Green MR (1994) Nucleosome disruption and enhancement of activator binding by a human SWI/SNF complex. Nature 370: 477–481

    Article  PubMed  CAS  Google Scholar 

  • Laherty CD, Yang WM, Sun JM, Davie JR, Seto E, Eisenman RN (1997) Histone deacetylases associated with the mSin3 corepressor mediate Mad transcriptional repression. Cell 89: 349–356

    Article  PubMed  CAS  Google Scholar 

  • Laherty CD, Billin AN, Lavinsky RM, Yochum GS, Bush AC, Sun JM, Mullen TM, Davie JR, Rose DW, Glass CK, Rosenfeld MG, Ayer DE, Eisenman RN (1998) SAP30, a component of the mSin3 corepressor complex involved in N-CoR-mediated repression by specific transcription factors. Mol Cell 2: 33–42

    Article  PubMed  CAS  Google Scholar 

  • Längst G, Bonte EJ, Corona DF, Becker PB (1999) Nucleosome Movement by CHRAC and ISWI without disruption or trans-displacement of the histone octamer. 843–852

    Google Scholar 

  • Lewis JD, Meehan RR, Henze] WJ, Maureer-Fogy I, Jeppesen P, Klein F, Bird A (1992) Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA. Cell 69: 905–914

    Article  PubMed  CAS  Google Scholar 

  • Lindt CV, Emiliani S, Verdin E (1996) The expression of a small fraction of cellular genes is changed in response to histone hyperacetylation. Gene Expr 5: 345–253

    Google Scholar 

  • Luger K, Maumlder AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8A resolution. Nature 398: 251–260

    Google Scholar 

  • Lusser A, Brosch G, Loidl A, Haas H, Loidl P (1997) Identification of maize histone deacetylase HD2 as an acidic nucleolar phosphoprotein. Science 277: 88–91

    Article  PubMed  CAS  Google Scholar 

  • Ma XJ, Wu J, Altheim BA, Schultz MC, Grunstein M (1998) Deposition-related sites K5/K12 in histone H4 are not required for nucleosome deposition in yeast. Proc Natl Acad Sci USA 95: 6693–6698

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Balbas MA, Tsukiyama T, Gdula D, Wu C (1998) Drosophila NURF-55, a WD repeat protein involved in histone metabolism. Proc Natl Acad Sci USA 95: 132–137

    Google Scholar 

  • Meehan RR, Lewis JD, McKay S, Kleiner EL, Bird AP (1989) Identification of a mammalian protein that binds specifically to DNA containing methylated CpGs. Cell 58: 499–507

    Article  PubMed  CAS  Google Scholar 

  • Miska EA, Karlsson C, Langley E, Nielsen SJ, Pines J, Kouzarides T (1999) HDAC4 deacetylase associates with and represses the MEF2 transcription factor. Embo J 18: 5099–5107

    Article  PubMed  CAS  Google Scholar 

  • Ng HH, Zhang Y, Hendrich B, Johnson CA, Turner BM, Erdjument-Bromage H, Tempst P, Reinberg D, Bird A (1999) MBD2 is a transcriptional repressor belonging to the McCPI histone deacetylase complex. Nat Genet 23: 58–6I

    PubMed  CAS  Google Scholar 

  • Paro R, Hogness DS (1991) The Polycomb protein shares a homologous domain with a heterochromatinassociated protein of Drosophila. Proc Nall Acad Sei USA 88: 263–267

    Article  CAS  Google Scholar 

  • Parthun MR, Widom J. Gottschling D (1996) The major cytoplasmic histone acetyltransferasein yeast: links to chromatin replication and histone metabolism. Cell 87: 85–94

    Google Scholar 

  • Qian YW, Lee EY (1995) Dual retinoblastoma-binding proteins with properties related to a negative regulator of Ras in yeast. J Biol Chem 270: 25507–25513

    Article  PubMed  CAS  Google Scholar 

  • Rundlett SE, Carmen AA, Kobayashi R, Bavykin S, Turner BM, Grunstein M (1996) HDA1 and RPD3 are members of distinct yeast histone deacetylase complexes that regulate silencing and transcription. Proc Natl Acad Sci USA 93: 14503–14508

    Article  PubMed  CAS  Google Scholar 

  • Rundlett SE, Carmen AA, Suka N, Turner BM, Grunstein M (1998) Transcriptional repression by UME6 involves deacetylation of lysine 5 of histone I-14 by RPD3. Nature 392: 831–835

    Article  PubMed  CAS  Google Scholar 

  • Schreiber-Agus N, Chin L, Chen K, Torres R, Rao G, Guida P, Skoultchi Al, DePinho RA (1995) An amino-terminal domain of Mxi I mediates anti-Myc oncogenic activity and interacts with a homolog of the yeast transcriptional repressor SIN3. Cell 80: 777–786

    Article  PubMed  CAS  Google Scholar 

  • Seelig HP, Moosbrugger I, Ehrfeld H, Fink T, Renz M, Genth E (1995) The major dermatomyositisspecific Mi-2 autoantigen is a presumed helicase involved in transcriptional activation. Arthritis Rheum 38: 1389–1399

    Article  PubMed  CAS  Google Scholar 

  • Sherman JM, Pillus L (1997) An uncertain silence. Trends Genet 13: 308–313

    Article  PubMed  CAS  Google Scholar 

  • Shimamura A, Worcel A (1989) The assembly of regularly spaced nucleosomes in the Xenopus oocyte S-I50 extract is accompanied by deacetylation of histone H4. J Biol Chem 264: 14524–14530

    PubMed  CAS  Google Scholar 

  • Smith JS, Boeke JD (1997) An unusual form of transcriptional silencing in yeast ribosomal DNA. Genes Dev 11: 241–254

    Article  PubMed  CAS  Google Scholar 

  • Smith JS, Brachmann CB, Pillus L, Boeke JD (1998) Distribution of a limited Sir2 protein pool regulates the strength of yeast rDNA silencing and is modulated by Sir4p. 149: 1205–1219

    CAS  Google Scholar 

  • Sobel RE, Cook RG. Perry CA, Annunziato AT, Allis CD (1995) Conservation of deposition-related acetylation sites in newly synthesized histones H3 and H4. Proc Natl Acad Sei USA 92: 1237–1241

    Article  CAS  Google Scholar 

  • Solari F, Bareman A, Ahringcr J (1999) The Caenorhabditis elegans genes eg1–27 and egr-1 are similar to MTA I, a member of a chromatin regulatory complex, and are redundantly required for embryonic patterning. Development 126: 2483–2494

    PubMed  CAS  Google Scholar 

  • Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403: 41–45

    Article  PubMed  CAS  Google Scholar 

  • Suka N, Carmen AA, Rundlett SE, Grunstein M (1998) The regulation of gene activity by histones and the histone deacetylase RPD3. Cold Spring Harb Symp Quant Biol LXIII: 391–399

    Google Scholar 

  • Sun ZW, Hampsey M (1999) A general requirement for the Sin3-Rpd3 histone deactylase complex in regulating silencing in Saccharomyces cerevisiae. Genetics 152: 921–932

    PubMed  CAS  Google Scholar 

  • Taunton J, Hassig CA, Schreiber SL (1996) A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 272: 408–411

    Article  PubMed  CAS  Google Scholar 

  • Thompson JS, Ling X, Grunstein M (1994) Histone H3 amino terminus is required for telomeric and silent mating locus repression in yeast. Nature 369: 245–247

    Article  PubMed  CAS  Google Scholar 

  • Thon G, Cohen A, Klar AJ (1994) Three additional linkage groups that repress transcription and meiotic recombination in the mating-type region of Schizosaccharomyces pombe. Genetics 138: 29–38

    PubMed  CAS  Google Scholar 

  • Toh Y, Pencil SD, Nicolson GL (1994) A novel candidate metastasis-associated gene, mtal differentially expressed in highly metastatic mammary adenocarcinoma cell lines. J Biol Chem 269: 22958–22963

    PubMed  CAS  Google Scholar 

  • Toh Y, Oki E. Oda S, Tokunaga E, Ohno S, Mehara Y, Nicolson GL, Sugimachi K (1997) Overexpression of the MTAI gene in gastrointestinal carcinomas: correlation with invasion and metastasis. Int J Cancer 74: 459–463

    CAS  Google Scholar 

  • Tong JK, Hassig CA, Schnitzler GR, Kingston RE, Schreiber SL (1998) Chromatin deacetylation by an ATP-dependent nucleosome remodelling complex. Nature 395: 917–921

    Article  PubMed  CAS  Google Scholar 

  • Tsukiyama T. Wu C (1995) Purification and properties of an ATP-dependent nucleosome remodelling factor. Cell 83: 1011–1020

    Google Scholar 

  • Turner BM, Birley AJ, Lavender 1 (1992) Histone H4 isoforms acetylated at specific lysine residues define

    Google Scholar 

  • individual chromosomes and chromatin domains in Drosophila polytene nuclei. Cell 69:375–384

    Google Scholar 

  • Tweedie S, Ng HH, Barlow AL, Turner BM, Hendrich B, Bird A (1999) Vestiges of a DNA methylation system in Drosophila melanogasier Nat Genet 23: 389–390

    CAS  Google Scholar 

  • Tyler JK, Bulger M, Kamakaka RT, Kobayashi R, Kadonaga JT (1996) The p55 subunit of Drosophila chromatin assembly factor 1 is homologous to a histone deacetylase associated protein. Mol Cell Biol 16: 6149–6159

    PubMed  CAS  Google Scholar 

  • Tyler JK, Adams CR, Chen SR, Kobayashi R, Kamakaka RT, Kadonaga JT (2000) The RCAF complex mediates chromatin assembly during DNA replication and repair. Nature 402: 555–560

    Article  Google Scholar 

  • Varga-Weisz PD, Wilm M, Bonte E, Dumas K, Mann M, Becker PB (1997) Chromatin remodeling factor CHRAC contains the ATPases ISWI and topoisomerase II. Nature 388: 598–602

    Article  PubMed  CAS  Google Scholar 

  • Verdel A, Khochbin S (1999) Identification of a new family of higher eukaryotic histone deacetylases. J Biol Chem 274: 2440–2445

    Article  PubMed  CAS  Google Scholar 

  • Vermaak D, Wade PA, Jones PL, Shi YB, Wolffe AP (1999) Functional analysis of the SINS-histone deacetylase RPD3-RbAp48-histone H4 connection in Xenopus oocyte. Mol Cell Biol 19: 5847–5860

    PubMed  CAS  Google Scholar 

  • Verreault A, Kaufman PD, Kobayashi R, Stillman B (1996) Nucleosome assembly by a complex of CAF-1 and acetylated histones H3/H4. Cell 87: 95–104

    Article  PubMed  CAS  Google Scholar 

  • Verreault A, Kaufman PD, Kobayashi R, Stillman B (1998) Nucleosomal DNA regulates the core-histone binding subunit of the human Hatt acetyltransferase. Curr Biol 8: 96–108

    Article  PubMed  CAS  Google Scholar 

  • Vidal M, Strich R, Esposito RE, Gaber R (1991a) RPDJ (SIN3/UME4) is required for maximal activation and repression of diverse yeast genes. Mol Cell Biol 11: 6306–6316

    Google Scholar 

  • Vidal M (1991b) RPD3 encodes a second factor required to activate maximum positive and negative transcriptional states in Saccharomyces cerevisiae Mol Cell Biol 11:6317–6327

    Google Scholar 

  • Wade PA, Jones PL, Vermaak D, Wolfe AP (1998) A multiple subunit Mi-2 histone deactylase from Xenopus iaevis cofractionates with an associated Snf2 superfamily ATPase. Curr Biol 8: 843–846

    Article  PubMed  CAS  Google Scholar 

  • Wade PA, Gegonne A, Jones PL, Ballestar E, Aubry F, Wolffe AP (1999) Mi-2 complex couples DNA methylation to chromatin remodelling and histone deacetylation. Nat Genet 23: 62–66

    PubMed  CAS  Google Scholar 

  • Wang AH, Bertos NR, Vezmar M, Pelletier N, Crosato M, Heng HH, Th’ng J, Han J, Yang X-J (1999) HDAC4, a human histone deacetylase related to yeast HDA1, is a transcriptional corepressor. Mol Cell Biol 19: 7816–7827

    PubMed  CAS  Google Scholar 

  • Woodage T, Basrai MA, Baxevanis AD, Hieter P, Collins FS (1997) Characterization of the CHD family of proteins. Proc Natl Acad Sci USA 94: 11472–11477

    Article  PubMed  CAS  Google Scholar 

  • Xue Y, Wong J, Moreno GT, Young MK, Cote J, Wang W (1998) NURD, a novel complex with both ATP-dependent chromatin-remodelling and histone deacetylase activities. Mol Cell 2: 851–861

    Article  PubMed  CAS  Google Scholar 

  • Yang WM, Yao YL, Sun JM, Davie JR, Seto E (1997) Isolation and characterization of cDNAs corresponding to an additional member of the human histone deacetylase gene family. J Biol Chem 272: 28001–28007

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Iratni R, Erdjument-Bromage H, Tempst P, Reinberg D (1997) Histone deacetylases and SAP18, a novel polypeptide, are components of a human Sin3 complex. Cell 89: 357–364

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Sun ZW, Iratni R, Erdjument-Bromage H, Tempst P, Hampsey M, Reinberg D (1998a) SAP30, a novel protein conserved between human and yeast, is a component of a histone deacetylase complex. Mol Cell 1: 1021–1031

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, LeRoy G, Seelig HP, Lane WS, Reinberg D (1998b) The dermatomyositis-specific autoantigen Mi2 is a component of a complex containing histone deacetylase and nucleosome remodelling activities. Cell 95: 279–289

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Ng HH, Erdjument-Bromage H, Tempst P, Bird A (1999) Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes Dev 13: 1924–1935

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kuzmichev, A., Reinberg, D. (2001). Role of Histone Deacetylase Complexes in the Regulation of Chromatin Metabolism. In: Privalsky, M.L. (eds) Transcriptional Corepressors: Mediators of Eukaryotic Gene Repression. Current Topics in Microbiology and Immunology, vol 254. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10595-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10595-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08709-7

  • Online ISBN: 978-3-662-10595-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics