Skip to main content

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 254))

Abstract

Biochemical and genetic advances have fully integrated transcriptional control with the chromatin infrastructure within which DNA is packaged. Central to this integration is the recognition that corepressor complexes exist that interact with sequence-specific DNA-binding proteins, methyl-CpG-binding proteins, nucleosomal histones, and the basal transcriptional machinery. The purpose of this chapter is to discuss some of the unifying features of these diverse complexes and propose molecular mechanisms by which they might function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alifragis P, Poortinga G, Parkhurst SM, Delidakis C (1997) A network of interacting transcriptional regulators involved in Drosophila neural fate specification revealed by the yeast two-hybrid system. Proc Natl Acad Sci USA 94: 13099–13104

    Article  PubMed  CAS  Google Scholar 

  • Alkema MJ, Bronk M, Verhoeven E, Otte A, van’t Veer LJ, Berns A, van Lohuizen M (1997a) Identification of Bmil-interacting proteins as constituents of a multimeric mammalian polycomb complex. Genes Dev 11: 226–240

    Article  PubMed  CAS  Google Scholar 

  • Alkema MJ, Jacobs J, Voncken JW, Jenkins NA, Copeland NG, Satijn DP, Otte AP, Berns A, van Lohuizen M (1997b) MPc2, a new murine homolog of the Drosophila polycomb protein is a member of the mouse polycomb transcriptional repressor complex. J Mol Biol 273: 993–1003

    Article  PubMed  CAS  Google Scholar 

  • Alland L, Muhle R, Hou H Jr, Potes J, Chin L, Schreiber-Agus N, DePinho RA (1997) Role for N-CoR and histone deacetylase in Sin3-mediated transcriptional repression [see comments]. Nature 387: 49–55

    Article  PubMed  CAS  Google Scholar 

  • Almouzni G, Mechali M, Wolfe AP (1990) Competition between transcription complex assembly and chromatin assembly on replicating DNA. Embo J 9: 573–582

    PubMed  CAS  Google Scholar 

  • Almouzni G, Mechali M, Wolfe AP (1991) Transcription complex disruption caused by a transition in chromatin structure. Mol Cell Biol 11: 655–665

    PubMed  CAS  Google Scholar 

  • Almouzni G, Wolffe AP (1993) Replication-coupled chromatin assembly is required for the repression of basal transcription in vivo. Genes Dev 7: 2033–2047

    Article  PubMed  CAS  Google Scholar 

  • Andell III F, Ladurner AG, Inouye C, Tjian R, Nogales E (1999) Three dimensional structure of the human TFIID-IIA-IIB complex. Science 286: 2153–2156

    Article  Google Scholar 

  • Annunziato AT, Frado LL, Seale RL, Woodcock CL (1988) Treatment with sodium butyrate inhibits the complete condensation of interphase chromatin. Chromosoma 96: 132–138

    Article  PubMed  CAS  Google Scholar 

  • Arents G, Burlingame RW, Wang BC, Love WE, Moudrianakis EN (1991) The nucleosomal core histone octamer at 3.1 A resolution: a tripartite protein assembly and a left-handed superhelix. Proc Natl Acad Sci USA 88: 10148–10152

    Article  PubMed  CAS  Google Scholar 

  • Arndt KT, Styles CA, Fink GR (1989) A suppressor of a HIS4 transcriptional defect encodes a protein with homology to the catalytic subunit of protein phosphatases. Cell 56: 527–537

    Article  PubMed  CAS  Google Scholar 

  • Aronson BD, Fisher AL, Blechman K, Caudy M, Gergen JP (1997) Groucho-dependent and -independent repression activities of Runt domain proteins. Mol Cell Biol 17: 5581–5587

    PubMed  CAS  Google Scholar 

  • Auble DT, Hansen KE, Mueller CG, Lane WS, Thorner J, Hahn S (1994) Motl, a global repressor of RNA polymerase II transcription, inhibits TBP binding to DNA by an ATP-dependent mechanism. Genes Dev 8: 1920–1934

    Article  PubMed  CAS  Google Scholar 

  • Ausio J, Dong F, van Holde KE (1989) Use of selectively trypsinized nucleosome core particles to analyze the role of the histone “tails” in the stabilization of the nucleosome. J Mol Biol 206: 451–463

    Article  PubMed  CAS  Google Scholar 

  • Ayer DE, Kretzner L, Eisenman RN (1993) Mad: a heterodimeric partner for Max that antagonizes Myc transcriptional activity. Cell 72: 211 222

    Google Scholar 

  • Ayer DE, Lawrence QA, Eisenman RN (1995) Mad-Max transcriptional repression is mediated by ternary complex formation with mammalian homologs of yeast repressor Sin3. Cell 80: 767–776

    Article  PubMed  CAS  Google Scholar 

  • Baneres JL, Martin A, Parello J (1997) The N tails of histones H3 and H4 adopt a highly structured conformation in the nucleosome. J Mol Biol 273: 503–508

    CAS  Google Scholar 

  • Barra JL, Rhounim L, Rossignol JL, Faugeron G (2000) Histone HI Is Dispensable for MethylationAssociated Gene Silencing in Ascobolus immersus and Essential for Long Life Span. Mol Cell Biol 20: 61–69

    Article  PubMed  CAS  Google Scholar 

  • Bauer WR, Hayes JJ, White JH, Wolffe AP (1994) Nucleosome structural changes due to acetylation. J Mol Biol 236: 685–690

    Article  PubMed  CAS  Google Scholar 

  • Bird AP, Wolffe AP (1999) Methylation-induced repression-belts, braces, and chromatin [In Process Citation]. Cell 99: 451–454

    Article  PubMed  CAS  Google Scholar 

  • Bohm L, Crane-Robinson C (1984) Proteases as structural probes for chromatin: the domain structure of histones. Biosci Rep 4: 365 386

    Google Scholar 

  • Bouvet P, Dimitrov S, Wolfe AP (1994) Specific regulation of Xenopus chromosomal 5S rRNA gene transcription in vivo by histone H1. Genes Dev 8: 1147–1159

    Article  PubMed  CAS  Google Scholar 

  • Brand M, Leurent C, Mallouh V, Tora L, Schultz P (1999) Three-dimensional structures of the TAF(II)containing complexes TFIID and TFTC [In Process Citation]. Science 286: 2151–2153

    Article  PubMed  CAS  Google Scholar 

  • Brehm A, Nielsen SJ, Miska EA, McCance DJ, Reid JL, Bannister AJ, Kouzarides T (1999) The E7 oncoprotein associates with Mit and histone deacetylase activity to promote cell growth. Embo J 18: 2449–2458

    Article  PubMed  CAS  Google Scholar 

  • Breiling A, Bonte E, Ferrari S, Becker PB, Paru R (1999) The Drosophila Polycomb Protein Interacts with Nucleosomal Core Particles In Vitro via Its Repression Domain. Mol Cell Biol 19: 8451–8460

    PubMed  CAS  Google Scholar 

  • Brownell JE, Zhou J, Ranalli T. Kobayashi R, Edmondson DG, Roth SY, Allis CD (1996) Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 84: 843–851

    CAS  Google Scholar 

  • Buchenau P, Hodgson J, Strutt H, Arndt-Jovin DJ (1998) The distribution of polycomb-group proteins during cell division and development in Drosophila embryos: impact on models for silencing. J Cell Biol 141: 469–481

    Article  PubMed  CAS  Google Scholar 

  • Buratowski S, Hahn S, Guarente L, Sharp PA (1989) Five intermediate complexes in transcription initiation by RNA polymerase It. Cell 56: 549–561

    Article  PubMed  CAS  Google Scholar 

  • Cairns BR, Kim YJ, Sayre MH, Laurent BC, Kornberg RD (1994) A multisubunit complex containing the SWI I ADR6, SWI2/SNF2, SWI3, SNF5, and SNF6 gene products isolated from yeast. Proc Natl Acad Sci USA 91: 1950–1954

    Article  PubMed  CAS  Google Scholar 

  • Cameron EE, Bachman KE, Myohanen S, Herman JG, Baylin SB (1999) Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet 21: 103 107

    Google Scholar 

  • Carmen AA, Rundlett SE, Grunstein M (1996) HDAI and HDA3 are components of a yeast histone deacetylase ( HDA) complex. J Biol Chem 271: 15837–15844

    Google Scholar 

  • Carruthers LM, Bednar J, Woodcock CL, Hansen JC (1998) Linker histones stabilize the intrinsic salt-dependent folding of nucleosomal arrays: mechanistic ramifications for higher-order chromatin folding. Biochemistry 37: 14776–14787

    Article  PubMed  CAS  Google Scholar 

  • Cary PD, Crane-Robinson C, Bradbury EM, Dixon GH (1982) Effect of acetylation on the binding of N-terminal peptides of histone H4 to DNA. Eur J Biochem 127: 137–143

    Article  PubMed  CAS  Google Scholar 

  • Cavalli G, Paro R (1998) Chromo-domain proteins: linking chromatin structure to epigenetic regulation. Curr Opin Cell Biol 10: 354–360

    Article  PubMed  CAS  Google Scholar 

  • Cavallo RA, Cox RT, Moline MM, Roose J, Polevoy GA, Clevers H, Peifer M, Bejsovec A (1998) Drosophila Tcf and Groucho interact to repress Wingless signalling activity. Nature 395: 604–608

    Google Scholar 

  • Chandler SP, Guschin D, Landsberger N, Wolffe AP (1999) The methyl-CpG binding transcriptional repressor MeCP2 stably associates with nucleosomal DNA. Biochemistry 38: 7008–7018

    Article  PubMed  CAS  Google Scholar 

  • Chen G, Fernandez J, Mische S, Courey AJ (1999) A functional interaction between the histone deacetylase Rpd3 and the corepressor groucho in Drosophila development. Genes Dev 13: 2218–2230

    Article  PubMed  CAS  Google Scholar 

  • Chen G, Nguyen PH, Courey AJ (1998) A role for Groucho tetramerization in transcriptional repression. Mol Cell Biol 18: 7259–7268

    PubMed  CAS  Google Scholar 

  • Chen J, Willingham T, Margraf LR, Schreiber-Agus N, DePinho RA, Nisen PD (1995) Effects of the MYC oncogene antagonist, MAD, on proliferation, cell cycling and the malignant phenotype of human brain tumour cells. Nat Med 1: 638–643

    Google Scholar 

  • Chipev CC, Wolffe AP (1992) Chromosomal organization of Xenopus laevis oocyte and somatic 5S rRNA genes in vivo. Mol Cell Biol 12: 45–55

    PubMed  CAS  Google Scholar 

  • Choi CY, Kim YH, Kwon HJ, Kim Y (1999) The homeodomain protein NK-3 recruits Groucho and a histone deacetylase complex to repress transcription. J Biol Chem 274: 33194–33197

    Article  PubMed  CAS  Google Scholar 

  • Clark DJ, Kimura T (1990) Electrostatic mechanism of chromatin folding. J Mol Biol 211: 883–896

    Article  PubMed  CAS  Google Scholar 

  • Coffee B, Zhang F, Warren ST, Reines D (1999) Acetylated histones are associated with FMR1 in normal but not fragile X-syndrome cells [published erratum appears in Nat Genet 1999 Jun; 22(2):209]. Nat Genet 22: 98–101

    CAS  Google Scholar 

  • Cote J, Quinn J, Workman JL, Peterson CL (1994) Stimulation of GALA derivative binding to nucleosomal DNA by the yeast SWI/SNF complex. Science 265: 53–60

    Article  PubMed  CAS  Google Scholar 

  • Covault J, Chalkley R (1980) The identification of distinct populations of acetylated histone. J Biol Chem 255: 9110–9116

    PubMed  CAS  Google Scholar 

  • Dasso M, Dimitrov S, Wolffe AP (1994) Nuclear assembly is independent of linker histones. Proc Natl Acad Sci USA 91: 12477–12481

    Article  PubMed  CAS  Google Scholar 

  • De Rubertis F, Kadosh D, Henchoz S, Pauli D, Reuter G, Struhl K, Spierer P (1996) The histone deacetylase RPD3 counteracts genomic silencing in Drosophila and yeast. Nature 384: 589–591

    Article  PubMed  Google Scholar 

  • Dong F, Hansen JC, van Holde KE (1990) DNA and protein determinants of nucleosome positioning on sea urchin 5S rRNA gene sequences in vitro. Proc Natl Acad Sci USA 87: 5724–5728

    Article  PubMed  CAS  Google Scholar 

  • Dubnicoff T, Valentine SA, Chen G, Shi T, Lengyel JA, Paroush Z, Courey AJ (1997) Conversion of dorsal from an activator to a repressor by the global corepressor Groucho. Genes Dev 11: 2952–2957

    Article  PubMed  CAS  Google Scholar 

  • Eickbush TH, Moudrianakis EN (1978) The histone core complex: an octamer assembled by two sets of protein-protein interactions. Biochemistry 17: 4955–4964

    Article  PubMed  CAS  Google Scholar 

  • Eilers AL, Billin AN, Liu J, Ayer DE (1999) A 13-Amino Acid Amphipathic alpha-Helix Is Required for the Functional Interaction between the Transcriptional Repressor Mad and mSin3A. J Biol Chem 274: 32750–32756

    Article  PubMed  CAS  Google Scholar 

  • Eisenmann DM, Dollard C, Winston F (1989) SPT15, the gene encoding the yeast TATA binding factor TFIID, is required for normal transcription initiation in vivo. Cell 58: 1183–1191

    Article  PubMed  CAS  Google Scholar 

  • Fisher AL, Caudy M (1998) Groucho proteins: transcriptional corepressors for specific subsets of DNA-binding transcription factors in vertebrates and invertebrates. Genes Dev 12: 1931–1940

    Article  PubMed  CAS  Google Scholar 

  • Fisher AL, Ohsako S, Caudy M (1996) The WRPW motif of the hairy-related basic helix-loop-helix repressor proteins acts as a 4-amino-acid transcription repression and protein-protein interaction domain. Mol Cell Biol 16: 2670–2677

    PubMed  CAS  Google Scholar 

  • Fletcher TM, Hansen JC (1996) The nucleosomal array: structure/function relationships. Crit Rev Eukaryot Gene Expr 6: 149–188

    Article  PubMed  CAS  Google Scholar 

  • Franke A, DeCamillis M, Zink D, Cheng N, Brock HW, Paro R (1992) Polycomb and polyhomeotic are constituents of a multimeric protein complex in chromatin of Drosophila melanogaster. Embo J 11: 2941–2950

    PubMed  CAS  Google Scholar 

  • Freeman L, Kurumizaka H, Wolffe AP (1996) Functional domains for assembly of histones H3 and H4 into the chromatin of Xenopus embryos. Proc Natl Acad Sci USA 93: 12780–12785

    Article  PubMed  CAS  Google Scholar 

  • Gaillard PH, Martini EM, Kaufman PD, Stillman B, Moustacchi E, Almouzni G (1996) Chromatin assembly coupled to DNA repair: a new role for chromatin assembly factor I. Cell 86: 887–896

    Article  PubMed  CAS  Google Scholar 

  • Godde JS, Nakatani Y, Wolffe AP (1995) The amino-terminal tails of the core histones and the translational position of the TATA box determine TBP/TFIIA association with nucleosomal DNA. Nucleic Acids Res 23: 4557–4564

    Article  PubMed  CAS  Google Scholar 

  • Grbavec D, Lo R, Liu Y, Stifani S (1998) Transducin-like Enhancer of split 2, a mammalian homologue of Drosophila Groucho, acts as a transcriptional repressor, interacts with Hairy/Enhancer of split proteins, and is expressed during neuronal development. Eur J Biochem 258: 339–349

    Article  PubMed  CAS  Google Scholar 

  • Grbavec D, Stifani S (1996) Molecular interaction between TLE1 and the carboxyl-terminal domain of HES-1 containing the WRPW motif. Biochem Biophys Res Commun 223: 701–705

    Article  PubMed  CAS  Google Scholar 

  • Grunstein M (1990) Histone function in transcription. Annu Rev Cell Biol 6: 643–678

    Article  PubMed  CAS  Google Scholar 

  • Grunstein M (1997) Histone acetylation in chromatin structure and transcription. Nature 389: 349–352

    Article  PubMed  CAS  Google Scholar 

  • Gunster MJ, Satijn DP, Hamer KM, den Blaauwen JL, de Bruijn D, Alkema MJ, van Lohuizen M, van Driel R, Otte AP (1997) Identification and characterization of interactions between the vertebrate polycomb-group protein BMII and human homologs of polyhomeotic. Mol Cell Biol 17: 2326–2335

    PubMed  CAS  Google Scholar 

  • Hamiche A, Sandaltzopoulos R, Gdula DA, Wu C (1999) ATP-dependent histone octamer sliding mediated by the chromatin remodeling complex NURF. Cell 97: 833–842

    Article  PubMed  CAS  Google Scholar 

  • Hansen JC, Tse C, Wolffe AP (1998) Structure and function of the core histone N-termini: more than meets the eye. Biochemistry 37: 17637–17641

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto N, Brock HW, Nomura M, Kyba M, Hodgson J, Fujita Y, Takihara Y, Shimada K

    Google Scholar 

  • Higashinakagawa T (1998) RAE28, BMI1, and M33 are members of heterogeneous multimeric mammalian Polycomb group complexes. Biochem Biophys Res Commun 245: 356–365

    Article  PubMed  Google Scholar 

  • Hassig CA, Fleischer TC, Billin AN, Schreiber SL, Ayer DE (1997) Histone deacetylase activity is required for full transcriptional repression by mSin3A. Cell 89: 341–347

    Article  PubMed  CAS  Google Scholar 

  • Hayes JJ, Bashkin J, Tullius TD, Wolffe AP (199la) The histone core exerts a dominant constraint on the structure of DNA in a nucleosome. Biochemistry 30: 8434–8440

    Google Scholar 

  • Hayes JJ, Clark DJ, Wolffe AP (199 1 b) Histone contributions to the structure of DNA in the nucleosome. Proc Natl Acad Sci USA 88: 6829–6833

    Google Scholar 

  • Hayes JJ, Tullius TD, Wolffe AP (1990) The structure of DNA in a nucleosome. Proc Natl Acad Sci USA 87: 7405–7409

    Article  PubMed  CAS  Google Scholar 

  • Hebbes TR, Clayton AL, Thorne AW, Crane-Robinson C (1994) Core histone hyperacetylation co-maps with generalized DNase I sensitivity in the chicken beta-globin chromosomal domain. Embo J 13: 1823–1830

    PubMed  CAS  Google Scholar 

  • Heinzel T, Lavinsky RM, Mullen TM, Soderstrom M, Laherty CD, Torchia J, Yang WM, Brard G, Ngo SD, Davie JR, Seto E, Eisenman RN, Rose DW, Glass CK, Rosenfeld MG (1997) A complex containing N-CoR, mSin3 and histone deacetylase mediates transcriptional repression [see comments]. Nature 387: 43–48

    Article  PubMed  CAS  Google Scholar 

  • Herskowitz I, Andrews B, Kruger W, Ogas J, Sil A, Coburn C, Peterson C (1992) Integration of multiple regulatory inputs in the control of HO expression in yeast. In: McKnight SL, Yamamoto K (ed) Transcriptional Regulation. Cold Spring Harbor Press, New York, pp 949–974

    Google Scholar 

  • Hirschhorn JN, Brown SA, Clark CD, Winston F (1992) Evidence that SNF2/SWI2 and SNF5 activate transcription in yeast by altering chromatin structure. Genes Dev 6: 2288–2298

    Article  PubMed  CAS  Google Scholar 

  • Holstege FC, Jennings EG, Wyrick JJ, Lee TI, Hengartner CJ, Green MR, Golub TR, Lander ES, Young RA (1998) Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95: 717–728

    Article  PubMed  CAS  Google Scholar 

  • Hong L, Schroth GP, Matthews HR, Yau P, Bradbury EM (1993) Studies of the DNA binding properties of histone H4 amino terminus. Thermal denaturation studies reveal that acetylation markedly reduces the binding constant of the H4 “tail” to DNA. J Biol Chem 268: 305–314

    PubMed  CAS  Google Scholar 

  • Horlein AJ, Naar AM, Heinzel T, Torchia J, Gloss B, Kurokawa R, Ryan A, Kamei Y, Soderstrom M, Glass CK, et al. (1995) Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor [see comments]. Nature 377: 397–404

    Article  PubMed  CAS  Google Scholar 

  • Howe L, Itoh T, Katagiri C, Ausio J (1998) Histone HI binding does not inhibit transcription of nucleosomal Xenopus laevis somatic 5S rRNA templates. Biochemistry 37: 7077–7082

    Article  PubMed  CAS  Google Scholar 

  • Hurlin P,1, Queva C, Koskinen PJ, Steingrimsson E, Ayer DE, Copeland NG, Jenkins NA, Eisenman RN (1995) Mad3 and Mad4: novel Max-interacting transcriptional repressors that suppress c-myc dependent transformation and are expressed during neural and epidermal differentiation. Embo J 14: 5646–5659

    Google Scholar 

  • Imai Y, Kurokawa M, Tanaka K, Friedman AD, Ogawa S, Mitani K, Yazaki Y, Hirai H (1998) TLE, the human homolog of groucho, interacts with AMLI and acts as a repressor of AML1-induced trans-activation. Biochem Biophys Res Commun 252: 582–589

    Article  PubMed  CAS  Google Scholar 

  • Imbalzano AN, Kwon H, Green MR, Kingston RE (1994) Facilitated binding of TATA-binding protein to nucleosomal DNA [see comments]. Nature 370: 481–485

    Article  PubMed  CAS  Google Scholar 

  • Imhof A, Yang XJ, Ogryzko VV, Nakatani Y, Wolfe AP, Ge H (1997) Acetylation of general transcription factors by histone acetyltransferases. Curr Biol 7: 689–692

    Article  PubMed  CAS  Google Scholar 

  • Jimenez G, Paroush Z, Ish-Horowicz D (1997) Groucho acts as a corepressor for a subset of negative regulators, including Hairy and Engrailed. Genes Dev 11: 3072–3082

    Article  PubMed  CAS  Google Scholar 

  • Jones PL, Veenstra GJ, Wade PA, Vermaak D, Kass SU, Landsberger N, Strouboulis J, Wolfe AP (1998) Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet 19: 187–191

    Article  PubMed  CAS  Google Scholar 

  • Jurgens G (1985) A group of genes controlling the spatial expression of the bithorax complex in Drosophila. Nature 316: 153–155

    Article  Google Scholar 

  • Kadosh D, Struhl K (1997) Repression by Ume6 involves recruitment of a complex containing Sin3 corepressor and Rpd3 histone deacetylase to target promoters. Cell 89: 365–371

    Article  PubMed  CAS  Google Scholar 

  • Kadosh D, Struhl K (1998) Histone deacetylase activity of Rpd3 is important for transcriptional repression in vivo. Genes Dev 12: 797–805

    Article  PubMed  CAS  Google Scholar 

  • Karantza V, Freire E, Moudrianakis EN (1996) Thermodynamic studies of the core histones: pH and ionic strength effects on the stability of the (H3–H4)/(H3–H4)2 system. Biochemistry 35: 2037–2046

    Article  PubMed  CAS  Google Scholar 

  • Kass SU, Landsberger N, Wolfe AP (1997a) DNA methylation directs a time-dependent repression of transcription initiation. Curr Biol 7: 157–165

    Article  PubMed  CAS  Google Scholar 

  • Kass SU, Pruss D, Wolfe AP (1997b) How does DNA methylation repress transcription? Trends Genet 13: 444–449

    Article  PubMed  CAS  Google Scholar 

  • Kasten MM, Dorland S, Stillman DJ (1997) A large protein complex containing the yeast Sin3p and Rpd3p transcriptional regulators. Mol Cell Biol 17: 4852–4858

    PubMed  CAS  Google Scholar 

  • Kasten MM, Stillman DJ (1997) Identification of the Saccharomyces cerevisiae genes STB1–STB5 encoding Sin3p binding proteins. Mol Gen Genet 256: 376–386

    Article  PubMed  CAS  Google Scholar 

  • Kaufman PD, Kobayashi R, Stillman B (1997) Ultraviolet radiation sensitivity and reduction of telomeric silencing in Saccharomyces cerevisiae cells lacking chromatin assembly factor-I. Genes Dev 11: 345–357

    Article  PubMed  CAS  Google Scholar 

  • Kehle J, Beuchle D, Treuheit S, Christen B, Kennison JA, Bienz M, Muller J (1998) dMi-2, a hunchback-interacting protein that functions in polycomb repression. Science 282: 1897–1900

    Google Scholar 

  • Keleher CA, Redd MJ, Schultz J, Carlson M, Johnson AD (1992) Ssn6-Tupl is a general repressor of transcription in yeast. Cell 68: 709–719

    Article  PubMed  CAS  Google Scholar 

  • Kennison JA (1993) Transcriptional activation of Drosophila homeotic genes from distant regulatory elements. Trends Genet 9: 75–79

    Article  PubMed  CAS  Google Scholar 

  • Kim JL, Burley SK (1994) 1.9 A resolution refined structure of TBP recognizing the minor groove of TATAAAAG. Nat Struct Biol 1: 638–653

    Google Scholar 

  • Kim JL, Nikolov DB, Burley SK (1993a) Co-crystal structure of TBP recognizing the minor groove of a TATA element [see comments]. Nature 365: 520–527

    Article  PubMed  CAS  Google Scholar 

  • Kim Y, Geiger JH, Hahn S, Sigler PB (1993b) Crystal structure of a yeast TBP/TATA-box complex [see comments]. Nature 365: 512–520

    Article  PubMed  CAS  Google Scholar 

  • Kladde MP, Simpson RT (1994) Positioned nucleosomes inhibit Dam methylation in vivo. Proc Natl Acad Sci USA 91: 1361–1365

    Article  PubMed  CAS  Google Scholar 

  • Knezetic JA, Luse DS (1986) The presence of nucleosomes on a DNA template prevents initiation by RNA polymerase II in vitro. Cell 45: 95–104

    Article  PubMed  CAS  Google Scholar 

  • Knoepfler PS, Eisenman RN (1999) Sin meets NuRD and other tails of repression [In Process Citation]. Cell 99: 447–450

    Article  PubMed  CAS  Google Scholar 

  • Krajewski WA, Becker PB (1998) Reconstitution of hyperacetylated, DNase I-sensitive chromatin characterized by high conformational flexibility of nucleosomal DNA. Proc Natl Acad Sci USA 95: 1540–1545

    Google Scholar 

  • Kruger W, Herskowitz I (1991) A negative regulator of HO transcription, SIN1 (SPT2), is a nonspecific DNA-binding protein related to HMG]. Mol Cell Biol 11: 4135–4146

    PubMed  CAS  Google Scholar 

  • Kruger W, Peterson CL, Sil A, Coburn C, Arents G, Moudrianakis EN, Herskowitz I (1995) Amino acid substitutions in the structured domains of histones H3 and 114 partially relieve the requirement of the yeast SWI/SNF complex for transcription. Genes Dev 9: 2770–2779

    Article  PubMed  CAS  Google Scholar 

  • Kuo MH, Zhou J, Jambeck P, Churchill ME, Allis CD (1998) Histone acetyltransferase activity of yeast Gcn5p is required for the activation of target genes in vivo. Genes Dev 12: 627–639

    Article  PubMed  CAS  Google Scholar 

  • Kurumizaka H, Wolffe AP (1997) Sin mutations of histone H3: influence on nucleosome core structure and function. Mol Cell Biol 17: 6953–6969

    PubMed  CAS  Google Scholar 

  • Laherty CD, Yang WM, Sun JM, Davie JR, Seto E, Eisenman RN (1997) Histone deacetylases associated with the mSin3 corepressor mediate mad transcriptional repression. Cell 89: 349–356

    Article  PubMed  CAS  Google Scholar 

  • Lahoz EG, Xu L, Schreiber-Agus N, DePinho RA (1994) Suppression of Myc, but not Ela, transformation activity by Max-associated proteins, Mad and Mxil. Proc Natl Acad Sci USA 91: 5503–5507

    Google Scholar 

  • Langst G, Bonte EJ, Corona DFV, Becker PB (1999) Nucleosome movement by CHRAC and ISWI without disruption or transdisplacement of the histone octamer. Cell 97: 843–852

    Article  PubMed  CAS  Google Scholar 

  • Lee DY, Hayes JJ, Pruss D, Wolfe AP (1993) A positive role for histone acetylation in transcription factor access to nucleosomal DNA. Cell 72: 73 84

    Google Scholar 

  • Lee KM, Hayes JJ (1998) Linker DNA and HI-dependent reorganization of histone-DNA interactions within the nucleosome. Biochemistry 37: 8622–8628

    Article  PubMed  CAS  Google Scholar 

  • Levanon D, Goldstein RE, Bernstein Y, Tang H, Goldenberg D, Stifani S, Paroush Z, Groner Y (1998) Transcriptional repression by AMLI and LEE-1 is mediated by the TLE/Groucho corepressors. Proc Natl Acad Sci USA 95: 11590–11595

    Article  PubMed  CAS  Google Scholar 

  • Li Q, Herrler M, Landsberger N. Kaludov N, Ogryzko VV, Nakatani Y, Wolfe AP (1998) Xenopus NF-Y pre-sets chromatin to potentiate p300 and acetylation-responsive transcription from the Xenopus hsp70 promoter in vivo. Embo J 17: 6300–6315

    Google Scholar 

  • Li Q, Imhof A, Collingwood TN, Urnov FD, Wolffe AP (1999) p300 stimulates transcription instigated by ligand-hound thyroid hormone receptor at a step subsequent to chromatin disruption. Embo J I8: 5634–5652

    Google Scholar 

  • Lorch Y, LaPointe JW, Kornberg RD (1987) Nucleosomes inhibit the initiation of transcription but allow chain elongation with the displacement of histones. Cell 49: 203–210

    Article  PubMed  CAS  Google Scholar 

  • Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997a) Crystal structure of the nucleosome core particle at 2.8 A resolution [see comments]. Nature 389: 251–260

    Article  PubMed  CAS  Google Scholar 

  • Luger K, Rechsteiner TJ, Flaus AJ, Waye MM, Richmond TJ (1997b) Characterization of nucleosome core particles containing histone proteins made in bacteria. J Mol Biol 272: 301–311

    Article  PubMed  CAS  Google Scholar 

  • Matsui T (1987) Transcription of adenovirus 2 major late and peptide IX genes under conditions of in vitro nucleosome assembly. Mol Cell Biol 7: 1401–1408

    PubMed  CAS  Google Scholar 

  • Meisterernst M, Horikoshi M, Roeder RG (1990) Recombinant yeast TFIID, a general transcription factor, mediates activation by the gene-specific factor USF in a chromatin assembly assay. Proc Natl Acad Sci USA 87: 9153–9157

    Article  PubMed  CAS  Google Scholar 

  • Moehrle A, Paro R (1994) Spreading the silence: epigenetic transcriptional regulation during Drosophila development. Dev Genet 15: 478–484

    Article  PubMed  CAS  Google Scholar 

  • Muscat GE, Burke LI, Downes M (1998) The corepressor N-CoR and its variants RIP13a and RIP 13Delta1 directly interact with the basal transcription factors TFIIB, TAFI132 and TAFII70. Nucleic Acids Res 26: 2899–2907

    Article  PubMed  CAS  Google Scholar 

  • Mutskov V, Gerber D, Angelov D, Ausio J, Workman J, Dimitrov S (1998) Persistent interactions of core histone tails with nucleosomal DNA following acetylation and transcription factor binding. Mol Cell Biol 18: 6293 6304

    Google Scholar 

  • Neigeborn L, Carlson M (1984) Genes affecting the regulation of SUC2 gene expression by glucose repression in Saccharomyces cerevisiae. Genetics 108: 845–858

    PubMed  CAS  Google Scholar 

  • Nightingale K. Dimitrov S, Reeves R, Wolfe AP (1996) Evidence for a shared structural role for HMGI and linker histones B4 and HI in organizing chromatin. Embo J 15: 548–561

    Google Scholar 

  • Ogryzko VV, Schiltz RL, Russanova V, Howard BH, Nakatani Y (1996) The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87: 953 959

    Google Scholar 

  • Orlando V, Paro R (1993) Mapping Polycomb-repressed domains in the bithorax complex using in vivo formaldehyde cross-linked chromatin. Cell 75: 1187–1198

    Article  PubMed  CAS  Google Scholar 

  • Palaparti A, Baratz A, Stifani S (1997) The Groucho/transducin-like enhancer of split transcriptional repressors interact with the genetically defined amino-terminal silencing domain of histone H3. J Biol Chem 272: 26604–26610

    Article  PubMed  CAS  Google Scholar 

  • Parkhurst SM (1998) Groucho: making its Marx as a transcriptional co-repressor. Trends Genet 14: 130 132

    Google Scholar 

  • Paro R (1990) Imprinting a determined state into the chromatin of Drosophila. Trends Genet 6: 416–421

    Article  PubMed  CAS  Google Scholar 

  • Paro R, Harte PJ (1996) The role of Polycomb Group and Trithorax Group chromatin complexes in the maintenance of determined cells rates. In: Russo VEA, Martienssen RA, Riggs AD (eds), Epigenetic mechanisms of gene regulation. Cold Spring Harbor Laboratory Press, New York, pp 507–528

    Google Scholar 

  • Paro R, Hogness DS (1991) The Polycomb protein shares a homologous domain with a heterochromatinassociated protein of Drosophila. Proc Natl Acad Sci USA 88: 263–267

    Article  PubMed  CAS  Google Scholar 

  • Paroush Z, Wainwright SM, lsh-Horowitz D (1997) Torso signalling regulates terminal patterning in Drosophila by antagonising Groucho-mediated repression. Development 124: 3827–3834

    PubMed  CAS  Google Scholar 

  • Parthun MR, Widom J, Gottschling DE (1996) The major cytoplasmic histone acetyltransferase in yeast: links to chromatin replication and histone metabolism. Cell 87: 85–94

    Article  PubMed  CAS  Google Scholar 

  • Parvin JD, Sharp PA (1993) DNA topology and a minimal set of basal factors for transcription by RNA polymerase Il. Cell 73: 533–540

    Article  PubMed  CAS  Google Scholar 

  • Patterton HG, Landel CC, Landsman D, Peterson CL, Simpson RT (1998) The biochemical and phenotypic characterization of Hholp, the putative linker histone HI of Saccharomyces cerevisiae. J Biol Chem 273: 7268–7276

    Article  PubMed  CAS  Google Scholar 

  • Pennings S, Meersseman G, Bradbury EM (1991) Mobility of positioned nucleosomes on 5S rDNA. J Mol Biol 220: 101–110

    Article  PubMed  CAS  Google Scholar 

  • Pennings S, Meersseman G, Bradbury EM (1994) Linker histones H1 and H5 prevent the mobility of positioned nucleosomes. Proc Natl Acad Sci USA 91: 10275–10279

    Article  PubMed  CAS  Google Scholar 

  • Perry M, Chalkley R (1982) Histone acetylation increases the solubility of chromatin and occurs sequentially over most of the chromatin. A novel model for the biological role of histone acetylation. J Biol Chem 257: 7336–7347

    Google Scholar 

  • Peterson CL, Dingwall A, Scott MP (1994) Five SWI/SNF gene products are components of a large multisubunit complex required for transcriptional enhancement [see comments]. Proc Natl Acad Sci USA 91: 2905–2908

    Article  PubMed  CAS  Google Scholar 

  • Peterson CL, Kruger W, Herskowitz I (1991) A functional interaction between the C-terminal domain of RNA polymerase II and the negative regulator SIN1. Cell 64: 1135–1143

    Article  PubMed  CAS  Google Scholar 

  • Pirrotta V, Rastelli L (1994) White gene expression, repressive chromatin domains and homeotic gene regulation in Drosophila. Bioessays 16: 549–556

    Article  PubMed  CAS  Google Scholar 

  • Pruss D, Bartholomew B, Persinger J, Hayes J, Arents G, Moudrianakis EN, Wolfe AP (1996) An asymmetric model for the nucleosome: a binding site for linker histones inside the DNA gyres [see comments]. Science 274: 614–617

    Article  PubMed  CAS  Google Scholar 

  • Pruss D, Wolffe AP (1993) Histone-DNA contacts in a nucleosome core containing a Xenopus 5S rRNA gene. Biochemistry 32: 6810–6814

    Article  PubMed  CAS  Google Scholar 

  • Qian YW, Lee EY (1995) Dual retinoblastoma-binding proteins with properties related to a negative regulator of ras in yeast. J Biol Chem 270: 25507–25513

    Article  PubMed  CAS  Google Scholar 

  • Qian YW, Wang YC, Hollingsworth RE Jr, Jones D, Ling N, Lee EY (1993) A retinoblastoma-binding protein related to a negative regulator of Ras in yeast. Nature 364: 648–652

    Article  PubMed  CAS  Google Scholar 

  • Ramakrishnan V, Finch JT, Graziano V, Lee PL, Sweet RM (1993) Crystal structure of globular domain of histone H5 and its implications for nucleosome binding. Nature 362: 219–223

    Article  PubMed  CAS  Google Scholar 

  • Ranjan M, Wong J, Shi YB (1994) Transcriptional repression of Xenopus TR beta gene is mediated by a thyroid hormone response element located near the start site. J Biol Chem 269: 24699–24705

    PubMed  CAS  Google Scholar 

  • Rastelli L, Chan CS, Pirrotta V (1993) Related chromosome binding sites for zeste, suppressors of zeste and Polycomb group proteins in Drosophila and their dependence on Enhancer of zeste function. Embo J 12: 1513–1522

    PubMed  CAS  Google Scholar 

  • Roose J, Molenaar M, Peterson J, Hurenkamp J, Brantjes H, Moerer P, van de Wetering M, Destree O, Clevers H (1998) The Xenopus Wnt effector XTcf-3 interacts with Groucho-related transcriptional repressors. Nature 395: 608–612

    Article  PubMed  CAS  Google Scholar 

  • Rundlett SE, Carmen AA, Kobayashi R, Bavykin S, Turner BM, Grunstein M (1996) HDA1 and RPD3 are members of distinct yeast histone deacetylase complexes that regulate silencing and transcription. Proc Natl Acad Sci USA 93: 14503–14508

    Article  PubMed  CAS  Google Scholar 

  • Rundlett SE, Carmen AA, Suka N, Turner BM, Grunstein M (1998) Transcriptional repression by UME6 involves deacetylation of lysine 5 of histone H4 by RPD3. Nature 392: 831–835

    Article  PubMed  CAS  Google Scholar 

  • Santisteban MS, Arents G, Moudrianakis EN, Smith MM (1997) Histone octamer function in vivo: mutations in the dimer-tetramer interfaces disrupt both gene activation and repression. Embo J 16: 2493–2506

    Article  PubMed  CAS  Google Scholar 

  • Satijn DP, Gunster MJ, van der Vlag J, Hamer KM, Schul W, Alkema MJ, Saurin AJ, Freemont PS, van Driel R, Otte AP (1997a) RINGI is associated with the polycomb group protein complex and acts as a transcriptional repressor. Mol Cell Biol 17: 4105–4113

    PubMed  CAS  Google Scholar 

  • Satijn DP, Olson DJ, van der Vlag J, Hamer KM, Lambrechts C, Masselink H, Gunster MJ, Sewalt RG, van Driel R, Otte AP (1997b) Interference with the expression of a novel human polycomb protein, hPc2, results in cellular transformation and apoptosis. Mol Cell Biol 17: 6076–6086

    PubMed  CAS  Google Scholar 

  • Schild C, Claret FX, Wahli W, Wolfe AP (1993) A nucleosome-dependent static loop potentiates estrogen-regulated transcription from the Xenopus vitellogenin BI promoter in vitro. Embo J 12: 423–433

    PubMed  CAS  Google Scholar 

  • Schoorlemmer J, Marcos-Gutierrez C, Were F, Martinez R, Garcia E, Satijn DP, Otte AP, Vidal M (1997) Ring IA is a transcriptional repressor that interacts with the Polycomb- M33 protein and is expressed at rhombomere boundaries in the mouse hindbrain. Embo J 16: 5930–5942

    Article  PubMed  CAS  Google Scholar 

  • Sera T, Wolffe AP (1998) Role of histone HI as an architectural determinant of chromatin structure and as a specific repressor of transcription on Xenopus oocyte 55 rRNA genes. Mol Cell Biol 18: 3668–3680

    PubMed  CAS  Google Scholar 

  • Sewalt RG, van der Vlag J, Gunster MJ, Hamer KM, den Blaauwen JL, Satijn DP, Hendrix T, van Driel R, Otte AP (1998) Characterization of interactions between the mammalian Polycomb-group proteins Enxl/EZH2 and EED suggests the existence of different mammalian Polycomb-group protein complexes. Mol Cell Biol 18: 3586–3595

    PubMed  CAS  Google Scholar 

  • Shao Z, Raible F, Mollaaghababa R, Guyon JR, Wu CT, Bender W, Kingston RE (1999) Stabilization of chromatin structure by PRC1, a Polycomb complex. Cell 98: 37–46

    Article  PubMed  CAS  Google Scholar 

  • Shen X, Yu L, Weir JW, Gorovsky MA (1995) Linker histones are not essential and affect chromatin condensation in vivo. Cell 82: 47 56

    Google Scholar 

  • Shi Y, Seto E, Chang LS, Shenk T (1991) Transcriptional repression by YYI, a human GLI-Kruppelrelated protein, and relief of repression by adenovirus El A protein. Cell 67: 377–388

    Article  PubMed  CAS  Google Scholar 

  • Shrivastava A, Calame K (1994) An analysis of genes regulated by the multi-functional transcriptional regulator Yin Yang-1. Nucleic Acids Res 22: 5151–5155

    Article  PubMed  CAS  Google Scholar 

  • Simon J, Chiang A, Bender W (1992) Ten different Polycomb group genes are required for spatial control of the abdA and AbdB homeotic products. Development 114: 493–505

    PubMed  CAS  Google Scholar 

  • Simpson RT (1991) Nucleosome positioning: occurrence, mechanisms, and functional consequences. Prog Nucleic Acid Res Mol Biol 40: 143–184

    Article  PubMed  CAS  Google Scholar 

  • Smith S, Stillman B (1989) Purification and characterization of CAF-I, a human cell factor required for chromatin assembly during DNA replication in vitro. Cell 58: 15–25

    Article  PubMed  CAS  Google Scholar 

  • Solari F, Bateman A, Ahringer J (1999) The Caenorhanditis elegans genes egl-27 and egr-1 are similar to MTAI, a member of a chromatin regulatory complex, and are redundantly required for embryonic patterning. Development 126: 2483–2494

    PubMed  CAS  Google Scholar 

  • Sondek J, Bohm A, Lambright DG, Hamm HE, Sigler PB (1996) Crystal structure of a G-protein beta gamma dimer at 2.IA resolution [see comments] [corrected] [published erratum appears in Nature 1996 Feb 29;379(65681:847]. Nature 379: 369–374

    Article  PubMed  CAS  Google Scholar 

  • Steinbach OC, Wolffe AP, Rupp RA (1997) Somatic linker histones cause loss of mesodermal competence in Xenopus. Nature 389: 395–399

    Article  PubMed  CAS  Google Scholar 

  • Stern MJ, Jensen RE, Herskowitz 1 (1984) Five SWI genes are required for expression of the HO gene in yeast. J Mol Biol 178: 853 868

    Google Scholar 

  • Strouboulis J, Damjanovski S, Vermaak D, Meric F, Wolffe AP (1999) Transcriptional repression by XPcI, a new Polycomb homolog in Xenopus laevis embryos, is independent of histone deacetylase. Mol Cell Biol 19: 3958 3968

    Google Scholar 

  • Sun ZW, Hampsey M (1999) A general requirement for the Sin3-Rpd3 histone deacetylase complex in regulating silencing in Saccharomyces cerevisiae. Genetics 152: 921–932

    PubMed  CAS  Google Scholar 

  • Tamkun JW (1995) The role of brahma and related proteins in transcription and development. Curr Opin Genet Dev 5: 473–477

    Article  PubMed  CAS  Google Scholar 

  • Tamkun JW, Deuring R, Scott MP, Kissinger M, Pattatucci AM, Kaufman TC, Kennison JA (1992) brahma: a regulator of Drosophila homeotic genes structurally related to the yeast transcriptional activator SNF2/SWI2. Cell 68: 561–572

    Google Scholar 

  • Taunton J, Hassig CA, Schreiber SL (1996) A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p [see comments]. Science 272: 408–411

    Article  PubMed  CAS  Google Scholar 

  • Tomaszewski R, Mogielnicka E, Jerzmanowski A (1998) Both the 5S rRNA gene and the AT-rich flanks of Xenopus laevis oocyte-type 5S rDNA repeat are required for histone HI-dependent repression of transcription of pol Ill-type genes in in vitro reconstituted chromatin. Nucleic Acids Res 26: 5596–5601

    Article  PubMed  CAS  Google Scholar 

  • Tong JK, Hassig CA, Schnitzler GR, Kingston RE, Schreiber SL (1998) Chromatin deacetylation by an ATP-dependent nucleosome remodelling complex. Nature 395: 917–921

    Article  PubMed  CAS  Google Scholar 

  • Tse C, Sera T, Wolfe AP, Hansen JC (1998) Disruption of higher-order folding by core histone acetylation dramatically enhances transcription of nucleosomal arrays by RNA polymerase III. Mol Cell Biol 18: 4629 4638

    Google Scholar 

  • Tyler JK, Kadonaga JT (1999) The “dark side” of chromatin remodeling: repressive effects on transcription [In Process Citation]. Cell 99: 443–446

    Article  PubMed  CAS  Google Scholar 

  • Tlira K, Hayes JJ, Wolfe AP (1995) A positive role for nucleosome mobility in the transcriptional activity of chromatin templates: restriction by linker histones. Embo J 14: 3752–3765

    Google Scholar 

  • Ura K, Nightingale K, Wolffe AP (1996) Differential association of HMGI and linker histones B4 and H1 with dinucleosomal DNA: structural transitions and transcriptional repression. Embo J 15: 4959–4969

    PubMed  CAS  Google Scholar 

  • Usachenko SI, Gavin IM, Bavykin SG (1996) Alterations in nucleosome core structure in linker histone-depleted chromatin. J Biol Chem 271: 3831–3836

    Article  PubMed  CAS  Google Scholar 

  • Utley RT, Ikeda K, Grant PA, Cote J, Steger DJ, Eberharter A, John S, Workman JL (1998) Transcriptional activators direct histone acetyltransferase complexes to nucleosomes. Nature 394: 498–502

    Article  PubMed  CAS  Google Scholar 

  • Valentine SA, Chen G, Shandala T, Fernandez J, Mische S, Saint R, Courey AJ (1998) Dorsal-mediated repression requires the formation of a multiprotein repression complex at the ventral silencer. Mol Cell Biol 18: 6584–6594

    PubMed  CAS  Google Scholar 

  • van der Vlag J, Otte AP (1999) Transcriptional repression mediated by the human polycomb-group protein EED involves histone deacetylation. Nat Genet 23: 474–478

    Article  PubMed  CAS  Google Scholar 

  • van Lohuizen M, Tijms M, Voncken JW, Schumacher A, Magnuson T, Wientjens E (1998) Interaction of mouse polycomb-group (Pc-G) proteins Enxl and Enx2 with Eed: indication for separate Pc-G complexes. Mol Cell Biol 18: 3572–3579

    PubMed  Google Scholar 

  • Vermaak D, Steinbach OC, Dimitrov S, Rupp RAW, Wolfe AP (1998) The globular domain of histone H1 is sufficient to direct specific gene repression in early Xenopus embryos. Curr Biol 8: 533–536

    Article  PubMed  CAS  Google Scholar 

  • Vermaak D, Wade PA, Jones PL, Shi YB, Wolffe AP (1999) Functional analysis of the SIN3-histone deacetylase RPD3-RbAp48-histone H4 connection in the Xenopus oocyte. Mol Cell Biol 19: 5847–5860

    PubMed  CAS  Google Scholar 

  • Verreault A, Kaufman PD, Kobayashi R, Stillman B (1998) Nucleosomal DNA regulates the corehistone-binding subunit of the human Hatl acetyltransferase. Curr Biol 8: 96–108

    Article  PubMed  CAS  Google Scholar 

  • Vettese-Dadey M, Grant PA, Hebbes TR, Crane-Robinson C, Allis CD, Workman JL (1996) Acetylation of histone H4 plays a primary role in enhancing transcription factor binding to nucleosomal DNA in vitro. Embo J 15: 2508–2518

    PubMed  CAS  Google Scholar 

  • Vettese-Dadey M, Walter P, Chen H, Juan LJ, Workman JL (1994) Role of the histone amino termini in facilitated binding of a transcription factor, GAL4-AH, to nucleosome cores. Mol Cell Biol 14: 970–981

    PubMed  CAS  Google Scholar 

  • Vidal M, Gaber RF (1991) RPD3 encodes a second factor required to achieve maximum positive and negative transcriptional states in Saccharomyces cerevisiae. Mol Cell Biol 11: 6317–6327

    PubMed  CAS  Google Scholar 

  • Vidal M, Strich R, Esposito RE, Gaber RF (1991) RPDI (SIN3/UME4) is required for maximal activation and repression of diverse yeast genes. Mol Cell Biol 11: 6306–6316

    PubMed  CAS  Google Scholar 

  • Wade PA, Gegonne A, Jones PL, Ballestar E, Aubry F, Wolfe AP (1999) Mi-2 complex couples DNA methylation to chromatin remodelling and histone deacetylation [see comments]. Nat Genet 23: 62–66

    PubMed  CAS  Google Scholar 

  • Wade PA, Jones PL, Vermaak D, Wolfe AP (1998) A multiple subunit Mi-2 histone deacetylase from Xenopus laevis cofractionates with an associated Snf2 superfamily ATPase. Curr Biol 8: 843–846

    Article  PubMed  CAS  Google Scholar 

  • Wade PA, Pruss D, Wolfe AP (1997) Histone acetylation: chromatin in action. Trends Biochem Sci 22: 128–132

    Article  PubMed  CAS  Google Scholar 

  • Wall G, Varga-Weisz PD, Sandaltzopoulos R, Becker PB (1995) Chromatin remodeling by GAGA factor and heat shock factor at the hypersensitive Drosophila hsp26 promoter in vitro. Embo J 14: 1727–1736

    PubMed  CAS  Google Scholar 

  • Wang H, Clark I, Nicholson PR, Herskowitz I, Stillman DJ (1990) The Saccharomyces cerevisiae SIN3 gene, a negative regulator of HO, contains four paired amphipathic helix motifs. Mol Cell Biol 10: 5927–5936

    PubMed  CAS  Google Scholar 

  • Wang H, Stillman DJ (1990) In vitro regulation of a SIN3-dependent DNA-binding activity by stimulatory and inhibitory factors. Proc Natl Acad Sci USA 87: 9761–9765

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Stillman DJ (1993) Transcriptional repression in Saccharomyces cerevisiae by a SIN3-LexA fusion protein. Mol Cell Biol 13: 1805–1814

    PubMed  CAS  Google Scholar 

  • Wedeen C, Harding K, Levine M (1986) Spatial regulation of Antennapedia and bithorax gene expression by the Polycomb locus in Drosophila. Cell 44: 739–748

    Article  PubMed  CAS  Google Scholar 

  • Williams FE, Trumbly RJ (1990) Characterization of TUPI, a mediator of glucose repression in Saccharomyces cerevisiae. Mol Cell Biol 10: 6500–6511

    PubMed  CAS  Google Scholar 

  • Winston F, Allis CD (1999) The bromodomain: a chromatin-targeting module? [news]. Nat Struct Biol 6: 601–604

    Article  PubMed  CAS  Google Scholar 

  • Wolffe AP (1994a) Nucleosome positioning and modification: chromatin structures that potentiate transcription. Trends Biochem Sci 19: 240–244

    Article  PubMed  CAS  Google Scholar 

  • Wolffe AP (1994b) Transcriptional activation. Switched-on chromatin. Curr Biol 4: 525–528

    Article  PubMed  CAS  Google Scholar 

  • Wolffe AP (1998) Chromatin: structure and function. Academic Press, San Diego

    Google Scholar 

  • Wolffe AP, Hayes JJ (1999) Chromatin disruption and modification. Nucleic Acids Res 27: 711–720

    Article  PubMed  CAS  Google Scholar 

  • Wolffe AP, Kurumizaka H (1998) The nucleosome: a powerful regulator of transcription. Prog Nucleic Acid Res Mol Biol 61: 379–422

    Article  PubMed  CAS  Google Scholar 

  • Wong CW, Privalsky ML (1998) Transcriptional repression by the SMRT-mSin3 corepressor: multiple interactions, multiple mechanisms, and a potential role for TFIIB. Mol Cell Biol 18: 5500–5510

    PubMed  CAS  Google Scholar 

  • Wong J, Li Q, Levi BZ, Shi YB, Wolffe AP (1997a) Structural and functional features of a specific nucleosome containing a recognition element for the thyroid hormone receptor. Embo J 16: 7130–7145

    Article  PubMed  CAS  Google Scholar 

  • Wong J, Patterton D, Imhof A, Guschin D, Shi YB, Wolffe AP (1998) Distinct requirements for chromatin assembly in transcriptional repression by thyroid hormone receptor and histone deacetylase. Embo J 17: 520–534

    Article  PubMed  CAS  Google Scholar 

  • Wong J, Shi YB, Wolfe AP (1995) A role for nucleosome assembly in both silencing and activation of the Xenopus TR beta A gene by the thyroid hormone receptor. Genes Dev 9: 2696–2711

    Article  PubMed  CAS  Google Scholar 

  • Wong J, Shi YB, Wolffc AP (1997b) Determinants of chromatin disruption and transcriptional regulation instigated by the thyroid hormone receptor: hormone-regulated chromatin disruption is not sufficient for transcriptional activation. Embo J 16: 3158 3171

    Google Scholar 

  • Workman JL, Roeder RG (1987) Binding of transcription factor TFIID to the major late promoter during in vitro nucleosome assembly potentiates subsequent initiation by RNA polymerase II. Cell 51: 613–622

    Article  PubMed  CAS  Google Scholar 

  • Wyrick JJ, Holstege FC, Jennings EG, Causton HC, Shore D, Grunstein M, Lander ES, Young RA (1999) Chromosomal landscape of nucleosome-dependent gene expression and silencing in yeast. Nature 402: 418–421

    Article  PubMed  CAS  Google Scholar 

  • Xue Y, Wong J, Moreno GT, Young MK, Cote J, Wang W (1998) NURD, a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities. Mol Cell 2: 851–861

    Article  PubMed  CAS  Google Scholar 

  • Yang WM, Inouye C, Zeng Y, Bearss D, Seto E (1996a) Transcriptional repression by YYI is mediated by interaction with a mammalian homolog of the yeast global regulator RPD3. Proc Natl Acad Sci USA 93: 12845–12850

    Article  PubMed  CAS  Google Scholar 

  • Yang XJ, Ogryzko VV, Nishikawa J, Howard BH, Nakatani Y (1996b) A p300/CBP-associated factor that competes with the adenoviral oncoprotein El A. Nature 382: 319–324

    Article  PubMed  CAS  Google Scholar 

  • Yoshida M, Kijima M, Akita M, Beppu T (1990) Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J Biol Chem 265: 17174–17179

    PubMed  CAS  Google Scholar 

  • Zervos AS, Gyuris J, Brent R (1993) Mxil, a protein that specifically interacts with Max to bind MycMax recognition sites [published erratum appears in Cell 1994 Oct 21; 79(2):following 388]. Cell 72: 223–232

    Google Scholar 

  • Zhang H, Levine M (1999) Groucho and dCtBP mediate separate pathways of transcriptional repression in the Drosophila embryo. Proc Natl Acad Sci USA 96: 535–540

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Bone JR, Edmondson DG, Turner BM, Roth SY (1998a) Essential and redundant functions of histone acetylation revealed by mutation of target lysines and loss of the Gcn5p acetyltransferase. Embo J 17: 3155–3167

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Iratni R, Erdjument-Bromage H, Tempst P, Reinberg D (1997) Histone deacetylases and SAPI8, a novel polypeptide, are components of a human Sin3 complex. Cell 89: 357–364

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, LeRoy G, Seelig HP, Lane WS, Reinberg D (1998b) The dermatomyositis-specific autoantigen Mit is a component of a complex containing histone deacetylase and nucleosome remodeling activities. Cell 95: 279 289

    Google Scholar 

  • Zhou YB, Gerchman SE, Ramakrishnan V, Travers A, Muyldermans S (1998) Position and orientation of the globular domain of linker histone H5 on the nucleosome. Nature 395: 402–405

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Urnov, F.D., Wolffe, A.P., Guschin, D. (2001). Molecular Mechanisms of Corepressor Function. In: Privalsky, M.L. (eds) Transcriptional Corepressors: Mediators of Eukaryotic Gene Repression. Current Topics in Microbiology and Immunology, vol 254. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10595-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10595-5_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08709-7

  • Online ISBN: 978-3-662-10595-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics