Skip to main content

Phosphorylation of Mammalian eIF4E by Mnk1 and Mnk2: Tantalizing Prospects for a Role in Translation

  • Chapter
Signaling Pathways for Translation

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 27))

Abstract

One of the first translation initiation factors shown to be phosphorylated in mitogen-stimulated mammalian cells was eukaryotic translation initiation factor 4E (eIF4E), the mRNA cap-binding protein (Duncan et al. 1987). eIF4E is also phosphorylated in many malignantly transformed cells (Lazaris Karatzas et al. 1990; Frederickson et al. 1991; Rinker Schaeffer et al. 1992; Rosenwald et al. 1993; Graff et al. 1995), and eIF4E overexpression can lead to transformation (De Benedetti and Rhoadsl990; Lazaris Karatzas et al. 1990). In many cell types, eIF4E seems to be limiting for translation initiation (De Benedetti and Rhoads 1990; Mader and Sonenberg 1995). These observations led to the hypothesis that eIF4E is regulated by phosphorylation, that phosphorylation increases translation efficiency, and that increased translation of certain mRNAs can lead to growth and, ultimately, contributes to malignant transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahn NG, Seger R et al (1992) Growth factor-stimulated phosphorylation cascades: activation of growth factor-stimulated MAP kinase. Ciba Found Symp 164:113–126

    PubMed  CAS  Google Scholar 

  • Amick GD, Damuni Z (1992) Protamine kinase phosphorylates eukaryotic protein synthesis initiation factor 4E. Biochem Biophys Res Commun 183:431–437

    Article  PubMed  CAS  Google Scholar 

  • Cano E, Mahadevan LC (1995) Parallel signal processing among mammalian MAPKs. Trends Biochem Sci 20:117–122

    Article  PubMed  CAS  Google Scholar 

  • Chen RH, Sarnecki C et al (1992) Nuclear localization and regulation of erk- and rsk-encoded protein kinases. Mol Cell Biol 12:915–927

    PubMed  CAS  Google Scholar 

  • De Benedetti A, Rhoads RE (1990) Overexpression of eukaryotic protein synthesis initiation factor 4E in HeLa cells results in aberrant growth and morphology. Proc Natl Acad Sci USA 87:8212–8216

    Article  PubMed  Google Scholar 

  • Duncan R, Milburn SC et al (1987) Regulated phosphorylation and low abundance of HeLa cell initiation factor eIF-4F suggest a role in translational control Heat shock effects on eIF-4F. J Biol Chem 262:380–388

    PubMed  CAS  Google Scholar 

  • Ferrell JJ (1996) Tripping the switch fantastic: how a protein kinase cascade can convert graded inputs into switch-like outputs. Trends Biochem Sci 21:460–466

    Article  PubMed  CAS  Google Scholar 

  • Ferrell JJ (1998) How regulated protein translocation can produce switch-like responses. Trends Biochem Sci 23:461–465

    Article  PubMed  CAS  Google Scholar 

  • Flynn A, Proud CG (1995) Serine 209, not serine 53, is the major site of phosphorylation in initiation factor eIF-4E in serum-treated Chinese hamster ovary cells. J Biol Chem 270:21684–21688

    Article  PubMed  CAS  Google Scholar 

  • Frederickson RM, Montine KS et al (1991) Phosphorylation of eukaryotic translation initiation factor 4E is increased in Src-transformed cell lines. Mol Cell Biol 11:2896–2900

    PubMed  CAS  Google Scholar 

  • Frederickson RM, Mushynski WE et al (1992) Phosphorylation of translation initiation factor eIF4E is induced in a ras-dependent manner during nerve growth factor-mediated PC12 cell differentiation. Mol Cell Biol 12:1239–1247

    PubMed  CAS  Google Scholar 

  • Fukunaga R, Hunter T (1997) MNK1, a new MAP kinase-activated protein kinase, isolated by a novel expression screening method for identifying protein kinase substrates. EMBO J 16:1921–1933

    Article  PubMed  CAS  Google Scholar 

  • Graff JR, Boghaert ER et al (1995) Reduction of translation initiation factor 4E decreases the malignancy of ras-transformed cloned rat embryo fibroblasts. Int J Cancer 60:255–263

    Article  PubMed  CAS  Google Scholar 

  • Graves LM, Guy HI et al (2000) Regulation of carbamoyl phosphate synthetase by MAP kinase. Nature 403:328–332

    Article  PubMed  CAS  Google Scholar 

  • Haas DW, Hagedorn CH (1991) Casein kinase I phosphorylates the 25-kDa mRNA cap-binding protein. Arch Biochem Biophys 284:84–89

    Article  PubMed  CAS  Google Scholar 

  • Haas DW, Hagedorn CH (1992) Protein kinase C phosphorylates both serine and threonine residues of the mRNA cap binding protein eIF-4E. Second Messengers Phosphoproteins 14:55–63

    PubMed  CAS  Google Scholar 

  • Haghighat A, Mader S et al (1995) Repression of cap-dependent translation by 4E-binding protein 1: competition with p220 for binding to eukaryotic initiation factor-4E. EMBO J 14:5701–5709

    PubMed  CAS  Google Scholar 

  • Haghighat A, Sonenberg N (1997) eIF4G dramatically enhances the binding of eIF4E to the mRNA 5’-cap structure. J Biol Chem 272:21677–21680

    Article  PubMed  CAS  Google Scholar 

  • Henis-Korenblit S, Strumpf NL et al (2000) A novel form of DAP5 protein accumulates in apoptotic cells as a result of caspase cleavage and internal ribosome entry site-mediated translation. Mol Cell Biol 20:496–506

    Article  PubMed  CAS  Google Scholar 

  • Hirabayashi T, Kume K et al (1998) Conditional expression of the dual-specificity phosphatase PYST1/MKP-3 inhibits phosphorylation of cytosolic phospholipase A2 in Chinese hamster ovary cells. Biochem Biophys Res Commun 253:485–488

    Article  PubMed  CAS  Google Scholar 

  • Holland PM, Cooper JA (1999) Protein modification: docking sites for kinases. Curr Biol 9:R329–R331

    Article  Google Scholar 

  • Ichijo H (1999) From receptors to stress-activated MAP kinases. Oncogene 18:6087–6093

    Article  PubMed  CAS  Google Scholar 

  • Imataka H, Gradi A et al (1998) A newly identified N-terminal amino acid sequence of human eIF4G binds poly(A)-binding protein and functions in poly(A)-dependent translation. EMBO J 17:7480–7489

    Article  PubMed  CAS  Google Scholar 

  • Imataka H, Sonenberg N (1997) Human eukaryotic translation initiation factor 4G (eIF4G) possesses two separate and independent binding sites for eIF4 A. Mol Cell Biol 17:6940–6947

    PubMed  CAS  Google Scholar 

  • Kaufman RJ, Murtha RP et al (1993) Characterization of wild-type and Ser53 mutant eukaryotic initiation factor 4E overexpression in mammalian cells. J Biol Chem 268:11902–11909

    PubMed  CAS  Google Scholar 

  • Kimball SR, Horetsky RL et al (1998) Signal transduction pathways involved in the regulation of protein synthesis by insulin in L6 myoblasts. Am J Physiol 274:C221–C228

    Google Scholar 

  • Kleijn M, Scheper GC et al (1998) Regulation of translation initiation factors by signal transduction. Eur J Biochem 253:531–544

    Article  PubMed  CAS  Google Scholar 

  • Kohler M, Haller H et al (1999) Nuclear protein transport pathways Exp Nephrol 7:290–294

    Article  PubMed  CAS  Google Scholar 

  • Koromilas AE, Lazaris Karatzas A et al (1992) mRNAs containing extensive secondary structure in their 5’ non-coding region translate efficiently in cells overexpressing initiation factor eIF4E. EMBO J 11:4153–4158

    PubMed  CAS  Google Scholar 

  • Lamphear BJ, Kirchweger R et al (1995) Mapping of functional domains in eukaryotic protein synthesis initiation factor 4G (eIF4G) with picornaviral proteases. Implications for capdependent and cap-independent translational initiation. J Biol Chem 270:21975–21983

    Article  PubMed  CAS  Google Scholar 

  • Lamphear BJ, Panniers R (1990) Cap binding protein complex that restores protein synthesis in heat-shocked Ehrlich cell lysates contains highly phosphorylated eIF-4E. J Biol Chem 265:5333–5336

    PubMed  CAS  Google Scholar 

  • Lamphear BJ, Rhoads RE (1996) A single amino acid change in protein synthesis initiation factor 4G renders cap-dependent translation resistant to picornaviral 2 A proteases. Biochemistry 35:15726–15733

    Article  PubMed  CAS  Google Scholar 

  • Laskey RA, Gorlich D et al (1996) Regulatory roles of the nuclear envelope. Exp Cell Res 229:204–211

    Article  PubMed  CAS  Google Scholar 

  • Lazaris Karatzas A, Montine KS et al (1990) Malignant transformation by a eukaryotic initiation factor subunit that binds to mRNA 5’ cap. Nature 345:544–547

    Article  Google Scholar 

  • Lazaris Karatzas A, Smith MR et al (1992) Ras mediates translation initiation factor 4E-induced malignant transformation. Genes Dev 6:1631–1642

    Article  Google Scholar 

  • Lazaris Karatzas A, Sonenberg N (1992) The mRNA 5’ cap-binding protein, eIF-4E, cooperates with v-myc or El A in the transformation of primary rodent fibroblasts. Mol Cell Biol 12:1234–1238

    Google Scholar 

  • Mader S, Lee H et al (1995) The translation initiation factor eIF-4E binds to a common motif shared by the translation factor eIF-4 gamma and the translational repressors 4E-binding proteins. Mol Cell Biol 15:4990–4997

    PubMed  CAS  Google Scholar 

  • Mader S, Sonenberg N (1995) Cap binding complexes and cellular growth control. Biochimie 77:40–44

    Article  PubMed  CAS  Google Scholar 

  • Makkinje A, Xiong H et al (1995) Phosphorylation of eukaryotic protein synthesis initiation factor 4E by insulin-stimulated protamine kinase. J Biol Chem 270:14824–14828

    Article  PubMed  CAS  Google Scholar 

  • Manzella JM, Blackshear PJ (1990) Regulation of rat ornithine decarboxylase mRNA translation by its 5’-untranslated region. J Biol Chem 265:11817–11822

    PubMed  CAS  Google Scholar 

  • Manzella JM, Rychlik W et al (1991) Insulin induction of ornithine decarboxylase Importance of mRNA secondary structure and phosphorylation of eucaryotic initiation factors eIF-4B and eIF-4E. J Biol Chem 266:2383–2389

    PubMed  CAS  Google Scholar 

  • Marcotrigiano J, Gingras A-C et al (1997a) Cocrystal structure of the messenger RNA 5’ capbinding protein (eIF4E) bound to 7-methyl-GDP. Cell 89:951–961

    Article  PubMed  CAS  Google Scholar 

  • Marcotrigiano J, Gingras A-C et al (1997b) X-ray studies of the messenger RNA 5’ cap-binding protein (eIF4E) bound to 7-methyl-GDP. Nucleic Acids Symp Ser 36:8–11

    PubMed  CAS  Google Scholar 

  • Matsuo H, Li H et al (1997) Structure of translation factor eIF4E bound to m7GDP and interaction with 4E-binding protein. Nat Struct Biol 4:717–724

    Article  PubMed  CAS  Google Scholar 

  • McKendrick L, Pain VM et al (1999) Translation initiation factor 4E. Int J Biochem Cell Biol 31:31–35

    Article  PubMed  CAS  Google Scholar 

  • Mendez R, Myers MJ et al (1996) Stimulation of protein synthesis, eukaryotic translation initiation factor 4E phosphorylation, and PHAS-I phosphorylation by insulin requires insulin receptor substrate 1 and phosphatidylinositol 3-kinase. Mol Cell Biol 16:2857–2864

    PubMed  CAS  Google Scholar 

  • Minich WB, Balasta ML et al (1994) Chromatographic resolution of in vivo phosphorylated and nonphosphorylated eukaryotic translation initiation factor eIF-4E:increased cap affinity of the phosphorylated form. Proc Natl Acad Sci USA 91:7668–7672

    Article  PubMed  CAS  Google Scholar 

  • Morley SJ (1997a) Intracellular signalling pathways regulating initiation factor eIF4E phosphorylation during the activation of cell growth. Biochem Soc Trans 25:503–509

    PubMed  CAS  Google Scholar 

  • Morley SJ (1997b) Signalling through either the p38 or ERK mitogen-activated protein (MAP) kinase pathway is obligatory for phorbol ester and T cell receptor complex (TCR-CD3)stimulated phosphorylation of initiation factor (eIF) 4E in Jurkat T cells. FEBS Lett 418:327–332

    Article  PubMed  CAS  Google Scholar 

  • Morley SJ, McKendrick L (1997) Involvement of stress-activated protein kinase and p38/RK mitogen-activated protein kinase signaling pathways in the enhanced phosphorylation of initiation factor 4E in NIH 3T3 cells. J Biol Chem 272:17887–17893

    Article  PubMed  CAS  Google Scholar 

  • Morley SJ, Pain VM (1995) Hormone-induced meiotic maturation in Xenopus oocytes occurs independently of p70s6k activation and is associated with enhanced initiation factor (eIF)4F phosphorylation and complex formation. J Cell Sci 108:1751–1760

    PubMed  CAS  Google Scholar 

  • Moroianu J(1997) Molecular mechanisms of nuclear protein transport. Crit Rev Eukaryot Gene Exp 7:61–72

    Article  CAS  Google Scholar 

  • Nishida E, Gotoh Y (1993) The MAP kinase cascade is essential for diverse signal transduction pathways. Trends Biochem Sci 18:128–131

    Article  PubMed  CAS  Google Scholar 

  • Novoa I, Martinez AF et al (1997) Cleavage of p220 by purified poliovirus 2 A(pro) in cell-free systems: effects on translation of capped and uncapped mRNAs. Biochemistry 36:7802–7809

    Article  PubMed  CAS  Google Scholar 

  • Ptushkina M von et al (1999) Repressor binding to a dorsal regulatory site traps human eIF4E in a high cap-affinity state. EMBO J 18:4068–4075

    Article  PubMed  CAS  Google Scholar 

  • Pyronnet S, Imataka H et al (1999) Human eukaryotic translation initiation factor 4G (eIF4G) recruits mnkl to phosphorylate eIF4E. EMBO J 18:270–279

    Article  PubMed  CAS  Google Scholar 

  • Raught B, Gingras A-C et al (2000) Serum-stimulated, rapamycin-sensitive phosphorylation sites in the eukaryotic translation initiation factor 4GI. EMBO J 19:434–444

    Article  PubMed  CAS  Google Scholar 

  • Rinker Schaeffer CW, Austin CV et al (1992) Ras transformation of cloned rat embryo fibroblasts results in increased rates of protein synthesis and phosphorylation of eukaryotic initiation factor 4E. J Biol Chem 267:10659–10664

    Google Scholar 

  • Robbin DJ, Cheng M et al (1992) Evidence for a Ras-dependent extracellular signal-regulated protein kinase (ERK) cascade. Proc Natl Acad Sci USA 89:6924–6928

    Article  Google Scholar 

  • Rosenwald IB, Rhoads DB et al (1993) Increased expression of eukaryotic translation initiation factors eIF-4E and eIF-2 alpha in response to growth induction by c-myc. Proc Natl Acad Sci USA 90:6175–6178

    Article  PubMed  CAS  Google Scholar 

  • Rychlik W, Russ MA et al (1987) Phosphorylation site of eukaryotic initiation factor 4E. J Biol Chem 262:10434–10437

    PubMed  CAS  Google Scholar 

  • Tanoue T, Adachi M et al (2000) A conserved docking motif in MAP kinases common to substrates, activators and regulators. Nat Cell Bio 12:110–116

    Article  Google Scholar 

  • Wang X, Flynn A et al (1998) The phosphorylation of eukaryotic initiation factor eIF4E in response to phorbol esters, cell stresses, and cytokines is mediated by distinct MAP kinase pathways. J Biol Chem 273:9373–9377

    Article  PubMed  CAS  Google Scholar 

  • Waskiewicz AJ, Flynn A et al (1997) Mitogen-activated protein kinases activate the serine/threonine kinases Mnkl and Mnk2. EMBO J 16:1909–1920

    Article  PubMed  CAS  Google Scholar 

  • Waskiewicz AJ, Johnson JC et al (1999) Phosphorylation of the cap-binding protein eukaryotic translation initiation factor 4E by protein kinase Mnkl in vivo. Mol Cell Biol 19:1871–1880

    PubMed  CAS  Google Scholar 

  • Xu XX, Rock CO et al (1994) Regulation of cytosolic phospholipase A2 phosphorylation and eicosanoid production by colony-stimulating factor 1. J Biol Chem 269:31693–31700

    PubMed  CAS  Google Scholar 

  • Zhang J, Zhang F et al (1995) Activity of the MAP kinase ERK2 is controlled by a flexible surface loop. Structure 3:299–307

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mahalingam, M., Cooper, J.A. (2001). Phosphorylation of Mammalian eIF4E by Mnk1 and Mnk2: Tantalizing Prospects for a Role in Translation. In: Rhoads, R.E. (eds) Signaling Pathways for Translation. Progress in Molecular and Subcellular Biology, vol 27. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09889-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09889-9_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07505-6

  • Online ISBN: 978-3-662-09889-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics