Skip to main content

5-Hydroxytryptamine and Noradrenaline Synthesis, Release and Metabolism in the Central Nervous System: Circadian Rhythms and Control Mechanisms

  • Chapter
Physiology and Pharmacology of Biological Rhythms

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 125))

Abstract

The variations in a range of physiological parameters over the course of the daily light: dark cycle have intrigued biologists for many years. The list of physiological functions measured is long and varied, ranging from changes in gross locomotor activity to the functioning of specific ion channels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agren H, Koulu M, Saavedra JM, Potter WZ, Linnoila M (1986) Circadian covariation of norepinephrine and serotonin in locus coeruleus and dorsal raphe nucleus in the rat. Brain Res 397: 353–358

    Article  PubMed  CAS  Google Scholar 

  • Akiyoshi J, Kuranaga H, Tsuchiyama A, Nagayama H (1989) Circadian rhythm of serotonin receptor in rat brain. Pharmacol Biochem Behav 32: 491–493

    Article  PubMed  CAS  Google Scholar 

  • Albrecht P, Visscher MB, Bittner JJ, Halberg F (1956) Daily changes in 5-hydroxytryptamine concentrations in mouse brain. Proc Soc Exp Biol Med 92: 703–706

    PubMed  CAS  Google Scholar 

  • Ashcroft GW, Eccleston D, Crawford TBB (1965) 5-Hydroxyindole metabolism in rat brain: a study of intermediate metabolism using the techniques of tryptophan loading. J Neurochem 12: 483–492

    Google Scholar 

  • Azmitia EC, Segal M (1978) An autoradiographic analysis of the differential projections of the dorsal and median raphe nuclei in the rat. J Comp Neurol 179: 641–668

    Article  PubMed  CAS  Google Scholar 

  • Banky Z, Halsz B, Nagy G (1986) Circadian corticosterone rhythm did not develop in rats seven weeks after destruction with 5,7-dihydroxytryptamine of the serotonergic terminals in the suprachiasmatic nucleus at the age of 16 days. Brain Res 369: 119–124

    Article  PubMed  CAS  Google Scholar 

  • Banky Z, Molnar J, Csernus V, Halsz B (1988) Further studies on circadian hormone rhythms after local pharmacological destruction of the serotonergic innervation of the rat suprachiasmatic region before the onset of the corticosterone rhythm. Brain Res 445: 222–227

    Article  PubMed  CAS  Google Scholar 

  • Blier P, Galzin A-M, Langer SZ (1989) Diurnal variations in the function of serotonergic terminals in the rat hypothalamus. J Neurochem 52: 453–459

    Article  PubMed  CAS  Google Scholar 

  • Brown F, Nicholass J, Redfern PH (1982) Synaptosomal tryptophan hydroxylase activity in rat brain measured over 24 hours. Neurochem Int 4: 181–183

    Article  PubMed  CAS  Google Scholar 

  • Brunello N, Rovescalli AC, Riva M, Galimberti R, Racagni G (1987) Rhythmic changes in rat hypothalamic 3H-imipramine binding and 5-HT uptake sites: possible biochemical correlate with antidepressant action. Soc Neurosci Abstr 13: 200

    Google Scholar 

  • Bucht G, Adolfsson R, Gottfries CG, Roos B-E, Winblad B (1981) Distribution of 5hydroxytryptamine and 5-hydroxyindoleacetic acid in human brain in relation to age, drug influence, agonal status and circadian variation. J Neural Transm 51: 185–203

    Article  PubMed  CAS  Google Scholar 

  • Cahill AL, Ehret CF (1981) Circadian variations in the activity of tyrosine hydroxylase, tyrosine aminotransferase and tryptophan hydroxylase: relationship to catecholamine metabolism. J Neurochem 37: 1109–1115

    Article  PubMed  CAS  Google Scholar 

  • Cagampang FRA, Inouye S-CT (1994) Diurnal and circadian changes of serotonin in the suprachiasmatic nuclei: regulation by light and an endogenous pacemaker. Brain Res 639: 175–179

    Article  PubMed  CAS  Google Scholar 

  • Cespuglio R, Faradji H, Crespi F, Jouvet M (1982) Detection by differential pulse voltammetry of 5-hydroxyindoleacetic acid in rostral brain areas: fluctuations occurring during the sleep-waking cycle. 6th European Congress on Sleep Research, Zurich pp 282–284

    Google Scholar 

  • Crespi F, Martin KF, Marsden CA (1988) Measurement of 5-HT in vivo using Nafion coated carbon fibre electrodes combined with differential pulse voltammetry. Neuroscience 27: 885–896

    Article  PubMed  CAS  Google Scholar 

  • Curzon G (1979) Relationships between plasma, CSF and brain tryptophan. J Neural Transm 15: 81

    CAS  Google Scholar 

  • Dahlstrom A, Fuxe K (1964) Evidence for the existence of monoamine containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brainstem neurones. Acta Physiol Scand 62 [Suppl 2321: 1–55

    Google Scholar 

  • Davidson C, Stamford JA (1995) Evidence that 5-hydroxytryptamine release in rat dorsal raphe nucleus is controlled by 5-HTIA, 5HTIB and 5-HT1D autoreceptors. Br J Pharmacol 114: 1107–1109

    Article  PubMed  CAS  Google Scholar 

  • Davies JA, Ancill RJ, Redfern PH (1972) Hallucinogenic drugs and circadian rhythms. Prog Brain Res 36: 79–95

    Article  PubMed  CAS  Google Scholar 

  • Edgar DM, Miller JD, Prosser RA, Dean RR, Dement WC (1993) Serotonin and the mammalian circadian system: II. Phase-shifting rat behavioral rhythms with serotonergic agents. J Biol Rhythms 8: 17–31

    Google Scholar 

  • Faradji H, Cespuglio R, Jouvet M (1983) Voltammetric measurements of 5-hydroxyindole compounds in the suprachiasmatic nuclei: circadian fluctuations, Brain Res 279: 111–119

    Article  PubMed  CAS  Google Scholar 

  • Ferraro JS, Steger RW (1989) Diurnal variation in brain serotonin is driven by the photic cycle and is not circadian in nature. Soc Neurosci Abstr 15: 293. 16

    Google Scholar 

  • Ferraro JS, Steger RW (1990) Diurnal variations in brain serotonin are driven by the photic cycle and are not circadian in nature. Brain Res 512: 121–124

    Article  PubMed  CAS  Google Scholar 

  • Fornal CA, Jacobs BL (1988) Physiological and behavioural correlates of serotonergic single unit activity. In: Osborne NN, Hamon M (eds) Neuronal serotonin. Wiley, Chichester, pp 305–346

    Google Scholar 

  • Friedman PA, Kappelman AH, Kaufman S (1972) Partial purification and characterisation of tryptophan hydroxylase from rabbit hindbrain. J Biol Chem 247: 4165–4173

    PubMed  CAS  Google Scholar 

  • Galzin A-M, Moret C, Langer SZ (1984) Evidence that exogenous but not endogenous norepinephrine activates the presynaptic alpha-2 adrenoceptors on serotonergic nerve endings in the rat hypothalamus J Pharmacol Exp Ther 228: 725–732

    PubMed  CAS  Google Scholar 

  • Galzin AM, Poncet V, Langer SZ (1990) 5-HT3 receptor agonists enhance the electrically evoked release of [3H]5-HT in guinea pig frontal cortex slices. Br J Pharmacol 100: 307 P

    Google Scholar 

  • Garratt J, Marsden CA, Crespi F (1988) 8OH-DPAT can decrease 5-HT neuronal firing and release but not metabolism. Br J Pharmaco1: 95 874 P

    Google Scholar 

  • Goodwin GM, DeSouza RJ, Green AR (1985) The pharmacology of the hypothermic response in mice to 8-hydroxy-2-(di-n-propylamino)tetralin (8OH-DPAT). A model of presynaptic 5-HT1 function. Neuropharmacology 24: 1187–1194

    Article  PubMed  CAS  Google Scholar 

  • Goodwin GM, DeSouza RJ, Green AR, Heal DJ (1987) The pharmacology of the behavioural and hypothermic responses of rats to 8-hydroxy-2-(di-n-propylamino) tetralin (8OH-DPAT). Psychopharmacology 91: 506–511

    Article  PubMed  CAS  Google Scholar 

  • Green CB, Cahill GM, Besharse JC (1995) Regulation of tryptophan hydroxylase expression by a retinal circadian oscillator in vitro. Brain Res 677: 283–290

    Article  PubMed  CAS  Google Scholar 

  • Hery F, Rouer E, Glowinski J (1972) Daily variations of serotonin matabolism in the rat brain. Brain Res 43: 445–465

    Article  PubMed  CAS  Google Scholar 

  • Hillier JG, Redfern PH (1975) The 24 hour variation in 5-hydroxytryptophan decarboxylase activity in the rat brain. J Neurochem 27: 311–312

    Article  Google Scholar 

  • Hillier JG, Redfern PH (1977) 24 hour rhythm in serum and brain indoleamines: tryptophan hydroxylase and MAO activity in the rat. Int J Chronobiol 4: 197–210

    Google Scholar 

  • Hussein L, Goedke HW (1979) Diurnal rhythm in plasma level of total and free tryptophan and cortisol in rabbits. Res Exp Med Berlin 176: 123–130

    Article  CAS  Google Scholar 

  • Hutson PH, Sarna GS, O’Connell MT, Curzon G (1988) Decrease of hippocampal 5-HT release following infusion of 8OH-DPAT into the dorsal raphe. Br J Pharmacol 94: 387 P

    Article  Google Scholar 

  • Kalen P, Rosegren E, Lindvall O, Bjorklund A (1989) Hippocampal noradrenaline and serotonin release over 24 hours as measured by the dialysis technique in freely moving rats: correlation to behavioural activity state, effect of handling and tail pinch. Eur J Neurosci 1: 181–188

    Article  PubMed  Google Scholar 

  • Kan JP, Chouvet G, Hery F (1977) Daily variations of various parameters of serotonin metabolism in the rat brain. I. Circadian variations of tryptophan-5-hydroxylase in the raphe nuclei and the striatum. Brain Res 123: 125–136

    Article  PubMed  CAS  Google Scholar 

  • Kawai K, Yokota N, Yamawaki S (1994) Effect of chronic tryptophan depletion on the circadian rhythm of wheel-running activity in rats. Physiol Behav 55: 10051013

    Google Scholar 

  • Kempf E, Mandel P, Oliverio A, Puglisi-Allegra S (1982) Circadian variations of nor-adrenaline, 5-hydroxytryptamine and dopamine in specific brain areas of C57B1/6 and BALB/c mice. Brain Res 232: 472–478

    Article  PubMed  CAS  Google Scholar 

  • Khan IA, Joy KP (1988) Seasonal and daily variations in hypothalamic monoamine levels and monoamine oxidase activity in the teleost Channa punctatus ( Bloch ). Chronobiol Int 5: 311–316

    Google Scholar 

  • Leathwood P (1989) Circadian rhythms of plasma amino acids, brain neurotransmitters and behaviour. In: Arendt J, Minors DS, Waterhouse JM (eds) Biological rhythms in clinical practice. Wright, London, pp 136–159

    Google Scholar 

  • Loizou G, Redfern PH (1986) Circadian variation in uptake of tryptophan by synaptosomes from rat cortex. J Pharm Pharmacol 38: 89 P

    Article  Google Scholar 

  • Lovenberg TW, Baron BM, de Lecea L, Miller JD, Prosser RA, Rea MA, Foye PE, Racke M, Slone AL, Siegel BW, Danielson PE, Sutcliffe JG, Erlander MG (1993) A novel adenylate cyclase-activating serotonin receptor (5-HT7) implicated in the regulation of mammalian circadian rhythms. Neuron 11: 449–458

    Article  PubMed  CAS  Google Scholar 

  • Manshardt J, Wurtman RJ (1968) Daily rhythm in the noradrenaline content of rat hypothalamus. Nature 217: 574–575

    Article  PubMed  CAS  Google Scholar 

  • Mantyh PW, Kemp JA (1983) The distribution of putative neurotransmitters in the lateral geniculate nucleus of the rat. Brain Res 288: 344–348

    Article  PubMed  CAS  Google Scholar 

  • Marsden CA, Maidment NT, Brazell MP (1984) An introduction to in vivo electrochemistry. In: Marsden CA (ed) Measurement of neurotransmitter release in vivo. Wiley, Chichester, pp 127–151

    Google Scholar 

  • Marsden CA, Martin KF (1985a) RU 24969 decreases 5-HT release in the SCN by acting on 5-HT receptors in the SCN but not the dorsal raphe. Br. J Pharmacol 86: 219P

    Google Scholar 

  • Marsden CA, Martin KF (1985b) In vivo voltammetric evidence that the 5-HT auto-receptor is not of the 5-HTIA subtype. Br J Pharmacol 86: 445 P

    Google Scholar 

  • Marsden CA, Martin KF (1986) Involvement of 5-HTIA and alpha2 receptors in the decreased serotonin release and metabolism in rat suprachiasmatic nucleus after i.v. 8OH-DPAT. Br J Pharmacol 89: 277–286

    Article  PubMed  CAS  Google Scholar 

  • Marsden CA, Martin KF, Webb AJ (1985) Absence in mice of a diurnal variation in 5HT1A receptor function. J Pharm Pharmacol 37: [Proc Suppl] 155 P

    Article  Google Scholar 

  • Martin KF (1982) Antidepressant drugs and 24-hour rhythms. Ph.D. Thesis. University of Bath

    Google Scholar 

  • Martin KF (1991) Rhythms in neurotransmitter turnover: focus on the serotonergic system. Pharmac Ther 51: 421–429

    Article  CAS  Google Scholar 

  • Martin KF, Crespi F, Marsden CA (1988) In vivo electrochemistry with carbon fibre electrodes — principles and application to neuropharmacology. Trends Anal Chem 7: 334–339

    Article  CAS  Google Scholar 

  • Martin KF, Hannon SD, Phillips I, Heal DJ (1992) Opposing roles for 5-HT,B and 5HT3 receptors in the control of 5-HT release in rat hippocampus in vivo. Br J Pharmacol 106: 139–142

    Article  PubMed  CAS  Google Scholar 

  • Martin KF, Marsden CA (1985) In vivo diurnal variations of 5-HT release in hypothalamic nuclei. In: Redfern PH, Campbell IC, Davies JA, Martin KF (eds) Circadian rhythms in the central nervous system. Macmillan, London, pp 81–94

    Google Scholar 

  • Martin KF, Marsden CA (1986a) In vivo voltammetry in the suprachiasmatic nucleus of the rat: effects of RU 24969, methiothepin and ketanserin. Eur J Pharmacol 121: 135–140

    Article  PubMed  CAS  Google Scholar 

  • Martin KF, Marsden CA (1986b) Pharmacological manipulation of the serotonergic input to the SCN — an insight into the control of circadian rhythms. Ann N Y Acad Sci 473: 542–545

    Article  CAS  Google Scholar 

  • Martin KF, Marsden CA (1988) In vivo identification of the serotonin (5-HT) auto-receptor in rat suprachiasmatic nucleus (SCN). In: Briley M, Fillion G (eds) New concepts in depression. Macmillan, London, pp 60–68

    Google Scholar 

  • Martin KF, Marsden CA, Webb AR (1986) The behavioural response to the 5-hydroxytryptaminelB (5-HTIB) receptor agonist, RU 24969, may exhibit a circadian variation in the mouse. Chronobiol Int 4: 483–493

    Google Scholar 

  • Martin KF, Phillips I, Hearson M, Prow MR, Heal DJ (1992) Characterization of 8OH-DPAT-induced hypothermia in mice as a 5-HTIA autoreceptor response and its evaluation as a model to selectively identify antidepressants. Br J Pharmacol 107: 15–21

    Article  PubMed  CAS  Google Scholar 

  • McLennen IS, Lees GJ (1978) Diurnal changes in the kinetic properties of tryptophan hydroxylase from rat brain. J Neurochem 31: 557–559

    Article  Google Scholar 

  • Medanic M, Gillette MU, (1992) Serotonin regulates the phase of the rat suprachias- matic pacemaker in vitro only during the subjective day. J Physiol 450: 629–642

    PubMed  CAS  Google Scholar 

  • Middlemiss DN (1985) The putative 5-HT’ receptor agonist, RU 24969, inhibits the efflux of 5-hydroxytryptamine from rat cerebral cortex slices by stimulation of the 5-HT autoreceptor. J Pharm Pharmacol 37: 434–437

    Article  PubMed  CAS  Google Scholar 

  • Moret C (1985) Pharmacology of the serotonin autoreceptor. In: Green AR (ed) Neuropharmacology of serotonin. Oxford University Press, New York, pp 21–49

    Google Scholar 

  • Morin LP, Blanchard J (1991) Depletion of brain serotonin by 5, 7-DHT modifies hamster circadian rhythm response to light. Brain Res 566: 173–185

    CAS  Google Scholar 

  • Moser PC, Redfern PH (1985) Lack of variation over 24-hours in response to stimulation of 5-HT1 receptors in the mouse brain. Chronobiol Int 2: 235–238

    Article  PubMed  CAS  Google Scholar 

  • Mundey MK, Fletcher A, Marsden CA, Fone KCF (1995) Effect of iontophoretic application of the 5-HTIA antagonist WAY100635 on neuronal firing in the guinea-pig dorsal raphe nucleus. Br J Pharmacol 115: 84 p

    Article  Google Scholar 

  • Natali JP, McRae-Degueurce A, Chouvet G, Pujol JF (1980) Genetic studies of daily variations of first step enzymes of monoamine metabolism in the brain of inbred strains of mice and hybrids. II. Daily variations of tyrosine hydroxylase activity in the locus coeruleus. Brain Res 191: 205–213

    Google Scholar 

  • Ozaki N, Duncan WC, Johnson KA, Wehr TA (1993) Diurnal variations of serotonin and dopamine levels in discrete brain regions of Syrian hamsters and their modification by chronic clorgyline treatment. Brain Res 627: 41–48

    Article  PubMed  CAS  Google Scholar 

  • Philo R, Rudeen K, Reiter RJ (1977) A comparison of the circadian rhythms and concentrations of serotonin and norepinephrine in the telencephalon of four rodent species. Comp Biochem Physiol 570: 127–130

    Google Scholar 

  • Prosser RA, Dean RR, Edgar DM, Heller HC, Miller JD (1993) Serotonin and the mammalian circadian system: I. In vitro phase shifts by serotonergic agonists and antagonists. J Biol Rhythms 8: 1–16

    Google Scholar 

  • Quay WB (1967) Twenty-four hour rhythms in cerebral and brainstem contents of 5hydroxytryptamine in a turtle, Pseudemys scripta elegans. Comp Biochem Physiol 20: 217–221

    Article  CAS  Google Scholar 

  • Quay WB (1968) Differences in circadian rhythms in 5-hydroxytryptamine according to brain region. Am J Physiol 215: 1448–1453

    PubMed  CAS  Google Scholar 

  • Ramirez AD, Ramirez VD, Meyer DC (1987) The nature of in vivo 5-hydroxyindoleacetic acid output from 5-hydroxytryptamine terminals is related to specific regions of the suprachiasmatic nucleus. Neuroendocrinology 46: 430–438

    Article  PubMed  CAS  Google Scholar 

  • Redfern PH, Martin KF (1985) The effect of antidepressant drugs on 24-hour rhythms of tryptophan metabolism in the rat. Chronobiol Int 2: 109–113

    Article  PubMed  CAS  Google Scholar 

  • Roca AL, Weaver DR, Reppert SM (1993) Serotonin receptor gene expression in the rat suprachiasmatic nuclei. Brain Res 608: 159–165

    Article  PubMed  CAS  Google Scholar 

  • Sayer TJO, Hannon SD, Redfern PH, Martin KF (1994) Diurnal variation in nerve terminal 5-HT autoreceptor function in vivo: effects of antidepressant treatment. Br J Pharmacol 112: 95 P

    Google Scholar 

  • Scheving LE, Harrison WH, Gordon P, Pauly JE (1968) Daily fluctuation (circadian and ultradian) in biogenic amines of the rat brain. Am J Physiol 214: 166–173

    PubMed  CAS  Google Scholar 

  • Shen H, Semba K (1994) A direct retinal projection to the dorsal raphe nucleus in the rat. Brain Res 635: 159–168

    Article  PubMed  CAS  Google Scholar 

  • Sinei K, Redfern PH (1985) 24-Hour variation in synaptosomal tryptophan-5-hydroxy- lase activity in rat brain. In: Redfern PH, Campbell IC, Davies JA, Martin KF (eds) Circadian rhythms in the central nervous system. Macmillan, London, pp 193–198

    Google Scholar 

  • Singh A, Redfern PH (1990) Inhibition of 5-HTIB autoreceptors by methiothepin does not reveal a circadian variation in autoreceptor sensitivity in the cerebral cortex of the rat. Br J Pharmacol 99: 242 P

    Google Scholar 

  • Singh A, Redfern PH (1994a) Lack of circadian variation in the sensitivity of rat terminal 5-HTIB autoreceptors. J Pharm Pharmacol 46: 366–370

    Article  PubMed  CAS  Google Scholar 

  • Singh A, Redfern PH (1994b) Guinea pig 5-HT1D autoreceptors do not display a circadian variation in their responsiveness to serotonin. Chronobiol Int 11: 165–172

    Article  PubMed  CAS  Google Scholar 

  • Singh A, Redfern PH (1994c) Lack of circadian variation in the responsiveness of alpha2-heteroreceptors regulating serotonin release. Chronobiol Int 11: 94–102

    Article  PubMed  CAS  Google Scholar 

  • Smale L, Michels KM, Moore RY, Morin LP (1990) Destruction of the hamster serotonergic system by 5, 7-DHT: effects on circadian rhythm phase, entrainment and response to triazolam. Brain Res 515: 9–19

    CAS  Google Scholar 

  • Sprouse JS, Aghajanian GK (1987) Electrophysiological responses of serotonergic dorsal raphe neurons to 5-HTIA, and 5-HTIB agonists. Synapse 1: 3–9

    Article  PubMed  CAS  Google Scholar 

  • Stanley BG, Schwartz DH, Hernandez L, Hoebel BG, Leibowitz SF (1989) Patterns of extracellular norepinephrine in the paraventricular hypothalamus: relationship to circadian rhythm and deprivation-induced eating behavior. Life Sci 45: 275–282

    Article  PubMed  CAS  Google Scholar 

  • Stanley BG, Schwartz DH, Hernandez L, Leibowitz SF, Hoebel BG (1987) Diurnal rhythm of medial hypothalamic serotonin metabolism in relation to eating behaviour. Soc Neurosci Abstr 13: 9. 7

    Google Scholar 

  • Takahashi K, Shimoda K, Yamada N, Sasaki Y, Hayashi S (1986) Effect of dorsal midbrain lesion in infant rats on development of circadian rhythm. Brain Dev 8: 373–381

    Article  PubMed  CAS  Google Scholar 

  • Taylor PL, Garrick NA, Burns RS, Tamarkin L, Murphy DL, Markey SP (1982) Diurnal rhythms of serotonin in monkey cerebrospinal fluid. Life Sci 31: 1993–1999

    Article  PubMed  CAS  Google Scholar 

  • Tominaga K, Shibata S, Ueki S, Watanabe S (1992) Effects of 5-HTL,, receptor agonists on the circadian rhythm of wheel-running activity in hamsters. Eur J Pharmacol 214: 79–84

    Article  PubMed  CAS  Google Scholar 

  • Ungerstedt U (1984) Measurement of neurotransmitter release by intracranial dialysis. In: Marsden CA (ed) Measurement of neurotransmitter release in vivo. Wiley, Chichester, pp 81–106

    Google Scholar 

  • van den Pol AN, Tsujimoto KL (1985) Neurotransmitters of the hypothalamic suprachiasmatic nucleus• immunocytochemical analysis of 25 neuronal antigens. Neuroscience 15: 1049–1086

    Article  PubMed  Google Scholar 

  • van der Gugten J, Slangen JL (1975) Norepinephrine uptake by hypothalamic tissue from the rat related to feeding. Pharmacol Biochem Behav 3: 855–860

    Article  Google Scholar 

  • Wilkinson LO, Martin KF, Auerbach SB, Marsden CA, Jacobs BL (1988) Relationship between dialysate serotonin and raphe unit activity in freely moving cats. Br J Pharmacol 95: 872 P

    Google Scholar 

  • Williams JH, Miall-Allen VM, Klinowski M, Azmitia EC (1983) Effects of micro-injections of 5, 7-dihydroxytryptamine in the suprachiasmatic nuclei of the rat on serotonin reuptake and circadian variation of corticosterone levels. Neuroendocrinology 36: 431–435

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Martin, K.F., Redfern, P.H. (1997). 5-Hydroxytryptamine and Noradrenaline Synthesis, Release and Metabolism in the Central Nervous System: Circadian Rhythms and Control Mechanisms. In: Redfern, P.H., Lemmer, B. (eds) Physiology and Pharmacology of Biological Rhythms. Handbook of Experimental Pharmacology, vol 125. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09355-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09355-9_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08265-8

  • Online ISBN: 978-3-662-09355-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics