Skip to main content

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 125))

Abstract

The human time structure consists of a spectrum of rhythms of different frequencies which are superimposed on trends such as development and aging. In some variables and some frequencies, the amplitudes of the rhythmic variations may be larger than the change found in the rhythm-adjusted mean value during a lifetime. Many rhythms are genetically determined (endogenous). Some endogenous rhythms, e.g., in the circadian, circaseptan, or circannual frequency range, are adjusted in time (synchronized) by environmental factors, a process which adapts the human organism to our periodic surrounding. The genetic-environmental interactions in the establishment and the maintenance of rhythms begin in early intrauterine life and continue during infancy and childhood with the development of the mature time structure similar to that seen in the adult during the first 12–24 months of extrauterine life. Optimal functioning of the human organism depends upon an appropriate sequence of metabolic events and related variables within the organism (internal synchronization) and a temporal adjustment of these rhythms to the rhythmic events in our environment (external synchronization) (for review see Haus and Touitou 1994a). The availability of the “right” metabolite at the “right” time allows the orderly sequence of metabolic events required for tissue proliferation and/or other functions. Alterations in the human time structure accompany, and in some instances appear to be responsible for, the decline of many vital functions in the elderly with loss of adaptability to the environmental needs and increased risk of developing and succumbing to disease. However, it remains unclear whether the changes in the human time structure observed in the elderly are a cause or a consequence of the aging process. Changes in the time relation of the elderly to environmental synchronizers and failure to adapt to synchronizer changes may lead to clinical symptomatology and impairment of well-being.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe K, Fukui S (1979) The individual development of circadian temperature rhythm in infants. J Interdise Cycle Res 10: 227–232

    Article  Google Scholar 

  • Anderson S, Cornélissen G, Halberg F, Scarpelli PT, Cagnoni S, Germano G, Livi R, Scarpelli L, Cagnoni M, Holte JE (1989) Age effects upon the harmonic structure of human blood pressure in clinical health. Proceedings of the 2nd annual IEEE symposium on computer-based medical systems, Mpls, 26–27 June 1989. Computer Society Press, Washington DC, pp 238–243

    Google Scholar 

  • Anisimov VN, Bondarenko LA, Khavinson VKM (1992) Effect of pineal peptide preparation (epithalmin) on life span and pineal and serum melatonin level in old rats. Ann N Y Acad Sci 673: 53–57

    Article  PubMed  CAS  Google Scholar 

  • Arendt J (1994) The pineal. In: Touitou Y, Haus E (eds) Biologic rhythms in clinical and laboratory medicine. Springer, Berlin Heidelberg New York, pp 348–362

    Google Scholar 

  • Aschoff J (1969) Desynchronization and resynchronization of human circadian rhythms. Aerospace Med 40: 844–849

    PubMed  CAS  Google Scholar 

  • Atkinson G, Witte K, Nold G, Sasse U, Lemmer B (1994) Effects of age on circadian blood pressure and heart rate rhythms in patients with primary hypertension. Chronobiol Int 11: 35–44

    Article  PubMed  CAS  Google Scholar 

  • Bender AD (1970) The influence of age on the activity of catecholamines and related therapeutic agents. J Am Geriatr Soc 18: 220–232

    PubMed  CAS  Google Scholar 

  • Bertel O, Buhler FR, Kiowski W, Lutold BE (1980) Decreased beta-adrenoreceptor responsiveness as related to age, blood pressure and plasma catecholamines in patients with essential hypertension. Hypertension 2 (2): 130–138

    Article  PubMed  CAS  Google Scholar 

  • Birkenhager-Gillesse G, Derksen J, Lagaay M (1994) Dehydroepiandrosterone sulphate (DHEA-S) in the oldest old, aged 85 and over. Ann NY Acad Sci 719: 543–552

    Article  PubMed  CAS  Google Scholar 

  • Blichert-Toft M (1975) Secretion of corticotrophin and somatotrophin by the senescent adenohypophysis in man. Acta Endocrinol (Copenh) 78: 1–157

    CAS  Google Scholar 

  • Boddy K, Dawes GS (1974) Fetal breathing. J Physiol (Lond) 243: 599–603

    CAS  Google Scholar 

  • Brock MA (1983) Seasonal rhythmicity in lymphocyte blastogenic responses of mice persists in a constant environment. J Immunol 130: 2586–2588

    PubMed  CAS  Google Scholar 

  • Brock MA (1987a) Age-related changes in circannual rhythms of lymphocyte blastogenic responses in mice. Am J Physiol 252: R299–305

    PubMed  CAS  Google Scholar 

  • Brock MA (1987b) Temporal order vs. variability in activation of lymphocytes from aging mice. Mech Ageing Dev 37: 197–210

    Article  CAS  Google Scholar 

  • Brock MA (1991) Chronobiology and aging. J Am Geriatr Soc 39: 74–91

    PubMed  CAS  Google Scholar 

  • Bruguerolle B, Arnaud C, Bouvenot G (1989) Variations circadienne de l’alpha 1 glycoproteine acid (orosomucoide): consequences therapeutiques? Etude preliminaire. Sem Hos Paris 60: 2916–2917

    Google Scholar 

  • Cahn HA, Folk GE Jr, Huston PE (1968) Age comparison of human day-night physiological differences. Aerospace Med 39: 608–610

    PubMed  CAS  Google Scholar 

  • Campbell K (1980) Ultradian rhythms in the human fetus during the last ten weeks of gestation: a review. Semin Perinatol 4: 301–309

    PubMed  CAS  Google Scholar 

  • Campbell SS, Gillin JC, Kripke DF, Erikson P, Clopton P (1989) Gender differences in the circadian temperature of healthy elderly subjects: relationships to sleep quality. Sleep 12: 529–536

    PubMed  CAS  Google Scholar 

  • Carani C, Baldini A, Morabito F, Resentini M, Diazzi G, Sarti G, Del Rio G, Zini D (1987) Further studies on the circadian rhythms of serum melatonin and testosterone in elderly men. In: Trentini GP, DeGaetani C, Pévet P (eds) Fundamentals and clinics in pineal research. Raven, New York, p 377

    Google Scholar 

  • Casale G, Migliavacca A, Bonora C, Zurita IE, de Nicola P (1981) Circadian rhythm of plasma iron, total iron binding capacity and serum ferritin in arteriosclerotic aged patients. Age Ageing 10: 115–118

    Article  PubMed  CAS  Google Scholar 

  • Casale G, Emiliani S, de Nicola P (1982) Circadian rhythm of circulating blood cells in elderly persons. Hematologica 67: 837–844

    CAS  Google Scholar 

  • Casale G, Marinoni GL, d’Angelo R, de Nicola P (1983) Circadian rhythm of immunoglobulins in aged persons. Age Aging 12: 81–85

    Article  CAS  Google Scholar 

  • Chamberlain PF, Manning FA, Morrison I, Lange IR (1984) Circadian rhythm in bladder volumes in the term human fetus. Obstet Gynecol 64: 657–660

    PubMed  CAS  Google Scholar 

  • Clayton DL, Mullen AW, Barnett CC (1975) Circadian modification of drug-induced teratogenesis in rat fetuses. Chronobiologia 2: 210–217

    PubMed  CAS  Google Scholar 

  • Conway J, Wheeler R, Sannerstedt R (1971) Sympathetic nervous activity exercise in relation to age. Cardiovasc Res 5: 577–581

    Article  PubMed  CAS  Google Scholar 

  • Cornélissen G, Halberg F, Tarquini B, Mainardi G, Panero C, Cariddi A, Sorice V, Cagnoni M (1987) Blood pressure rhythmometry during the first week of human life. In: Tarquini B, Vergassola R (eds) Social diseases and chronobiology: proceedings of the IIIrd international symposium on social diseases and chronobiology. Florence, 29 Nov 1986. Esculapio, Bologna, pp 113–122

    Google Scholar 

  • Cornélissen G, Sitka U, Tarquini B, Mainardi G, Panero C, Cugini P, Weinert D, Romoli F, Cassanas G, Maggioni C, Vernier R, Work B, Einzig S, Rigatuso J, Schuh J, Kato J, Tamura K, Halberg F (1990) Chronobiologic approach to blood pressure during pregnancy and early extrauterine life. In: Hayes DK, Pauly JE, Reiter RJ (eds) Chronobiology: its role in clinical medicine, general biology, and agriculture, part A. Wiley-Liss, New York, pp 585–594

    Google Scholar 

  • Cornélissen G, Haus E, Halberg F (1994) Chronobiologic blood pressure assessment from womb to tomb. In: Touitou Y, Haus E (eds) Biologic rhythms in clinical and laboratory medicine. Springer, Berlin Heidelberg New York, pp 428–452

    Google Scholar 

  • Cugini P (1984) Chronobiology and senescence. In: Halberg F, Reale L, Tarquini B (eds) Proceedings of the Ilnd international symposium on chronobiologie approach to social medicine. Istituto Italiano di Medicina Sociale, RomepP 229–268

    Google Scholar 

  • Cugini P, Halberg F (1980) Age-associated rhythm changes in hormonal levels. All-University Council of Aging: News Walter Library, University of Minnesota, 6: 3

    Google Scholar 

  • Cugini P, Scavo D, Halberg F, Schramm A, Pusch HJ, Franke H (1980) Age and sex difference in circadian amplitude of serum aldosterone. In: Proceedings of the XXVIIIth international congress on physiological sciences. 13–19 July 1980. Budapest, p 1140

    Google Scholar 

  • Cugini P, Scavo D, Halberg F, Sothern RB, Meucci T, Salandi E, Massimiani F (1981) Aging and circadian rhythm of plasma renin and aldosterone. Maturitas 3: 173

    Article  PubMed  CAS  Google Scholar 

  • Cugini P, Scavo D, Halberg F, Schramm A, Pusch HJ, Franke H (1982) Methodologically critical interaction of circadian rhythms: sex and aging characterize serum aldosterone of the female adrenopause. J Gerontol 37: 403–411

    Article  PubMed  CAS  Google Scholar 

  • Cugini P, Lucia P, Murano G, Scavo D (1983a) Invecchiamento e standards cronobiologici di normalita per i livelli sierici di alcuni ormoni. Rendiconti Soc It Med Int, Roma, pp 183–186

    Google Scholar 

  • Cugini P, Scavo D, Centanni, Halberg F, Haus E, Lakatua D, Schramm A, Pusch HJ, Franke H, Kawasaki T (1983b) Circadian as well as circannual rhythms of circulating aldosterone have decreased amplitude in aging women. J Endocrinol Invest 6: 17–22

    PubMed  CAS  Google Scholar 

  • Cutler NR, Hodes JE (1983) Assessing the noradrenergic system in normal aging: a review of methodology. Exp Aging Res 9 (3): 123–127

    Article  PubMed  CAS  Google Scholar 

  • D’Agata R, Vigneri R, Polosa P (1974) Chronobiological study on growth hormone secretion in man: its relation to sleep-wake cycles and to increasing age. In: Scheving LE, Halberg F, Pauly JE (eds) Chronobiology. Igaku Shoin, Tokyo, p 81

    Google Scholar 

  • Dalton KJ, Denman DW, Dawson AJ, Hoffman HJ (1986) Ultradian rhythms in human fetal heart rate: a computerized time series analysis. Int J Biomed Comput 18: 45–60

    Article  PubMed  CAS  Google Scholar 

  • Davis FC, Menaker M (1981) Development of the mouse circadian pacemaker: independence from environmental cycles. J Comp Physiol 143: 527

    Article  Google Scholar 

  • Dement WC, Miles LE, Carskadon MA (1982) “White paper” on sleep and aging. J Am Geriatr Soc 30:25–50

    Google Scholar 

  • DeSchaepdryver AF, Hooft C, Delbeke MJ, den Noortgaete MV (1978) Urinary catecholamines and metabolites in children. J Pediatr 93 (2): 266–268

    Article  CAS  Google Scholar 

  • Descovich GC, Montalbetti N, Kuhl JFW, Rimondi S, Halberg F, Ceredi C (1974) Age and catecholamine rhythms. Chronobiologia 1: 163–171

    PubMed  CAS  Google Scholar 

  • DeVries JIP, Visser GHA, Prechtl HFR (1985) The emergence of fetal behavior. II. Quantitative aspects. Early Hum Dev 12: 99–120

    Google Scholar 

  • Doncaster HD, Barton RN, Horan MA, Roberts NA (1993) Factors influencing cortisol-adrenocorticotrophin relationships in elderly women with upper femur fractures. J Trauma 34: 49–55

    Article  PubMed  CAS  Google Scholar 

  • Dybkaer R, Lauritzen M, Krakauer R (1981) Relative reference values for clinical, chemical and hematological quantities in “healthy” elderly people. Acta Med Scand 209: 1–9

    Article  PubMed  CAS  Google Scholar 

  • Ebadi M, Samejima M, Pfeiffer RF (1993) Pineal gland in synchronizing and refining physiological events. News Physiol Sci 8: 30

    CAS  Google Scholar 

  • Engel R, Sothern RB, Halberg F (1985) Circadian and infradian aspects of blood pressure in a treated elderly mesorhypertensive physician (abstract). Chronobiologia 12: 243

    Google Scholar 

  • Esler M, Skews H, Leonard P, Jackman G, Bobik A, Korner P (1981) Age difference of noradrenaline kinetics in normal subjects. Clin Sci 60 (2): 217–219

    PubMed  CAS  Google Scholar 

  • Ferrari E, Magri F, Dori D, Migliorati G, Nescis T, Molla G, Fioraranti M, Solerte SB (1995) Neuroendocrine correlates of the aging brain in humans. Neuroendocrinology 61: 464–470

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein J, Roffwarg H, Boyar R, Kream J, Hellman L (1972) Age-related changes in the twenty-four hour spontaneous secretion of growth hormone. J Clin Endocrinol Metab 35: 665–670

    Article  PubMed  CAS  Google Scholar 

  • Florini JR, Prinz PN, Vitiello MV, Hintz RL (1985) Somatomedin C levels in healthy young and old men: relationship to peak and 24-hour integrated levels of growth hormone. J Gerontol 40: 2–7

    Article  PubMed  CAS  Google Scholar 

  • Frayn KN, Stoner HB, Barton RN, Heath DF, Galasko CS (1983) Persistence of high plasma glucose, insulin and cortisol concentrations in elderly patients with proximal femoral fractures. Age Aging 12: 70–76

    Article  CAS  Google Scholar 

  • Gavras H, Hatzinikolau P, North WG, Bresnahan M, Garvas I (1982) Interaction of the sympathetic nervous system with vasopressin and renin in the maintenance of blood pressure. Hypertension 4: 400–405

    Article  PubMed  CAS  Google Scholar 

  • Giusti M, Lomeo A, Marini G, Attanasio R, Baneca A, Camogliano L, Peluffo F, Giordano G (1987) Role of aging on growth hormone and prolactin release after growth hormone releasing hormone and domperidone in man. Horm Res 27: 134–140

    Article  PubMed  CAS  Google Scholar 

  • Goldenberg F (1991) Le sommeil du sujet âgé normal. Neurophysiol Clin 21: 267–279

    Article  PubMed  CAS  Google Scholar 

  • Goldstein DS, Lake CR, Chernow B, Ziegler GM, Coleman MD, Taylor AA, Mitchell JR, Kopin IJ, Keiser HR (1983) Age-dependence of hypertension-normotensive differences in plasma norepinephrine. Hypertension 5: 100–104

    Article  PubMed  CAS  Google Scholar 

  • Gordon GB, Shantz LM, Talalay P (1987) Modulation of growth, differentiation, and carcinogenesis by dehydroepiandrosterone. Adv Enzyme Regul 26: 355–382

    Article  PubMed  CAS  Google Scholar 

  • Gordon GB, Helz L, Sover KJ, Comstock GW (1991) Serum levels of DHEA and its sulfate, and the risk of developing bladder cancer. Cancer Res 51: 1366–1369

    PubMed  CAS  Google Scholar 

  • Gordon GB, Helz L, Sover KJ, Alberg AJ, Comstock GW (1993) Serum levels of dehydroepiandrosterone and dehydroepiandrosterone sulfate and the risk of developing gastric cancer. Cancer Epidemiol Biomarkers Prey 2: 33–35

    CAS  Google Scholar 

  • Greenberg LH, Weiss B (1978) B-Adrenergic receptors in aged rat brain: reduced number and capacity of pineal to develop supersensitivity. Science 201: 61–63

    Article  PubMed  CAS  Google Scholar 

  • Gupta D, Riedel L, Frick Hi, Attanasio A, Ranke MB (1983) Circulating melatonin in children: in relation to puberty, endocrine disorders, functional tests, and racial origin. Neuroendocrinol Lett 5: 63–78

    CAS  Google Scholar 

  • Halberg F, Panofsky H (1961) I. Thermo-variance spectra; method and clinical illustrations. Exp Med Surg 19: 284–309

    Google Scholar 

  • Halberg F, Ulstrom RA (1952) Morning changes in number of circulating eosinophils in infants. Acta Paediatr 50: 160–170

    Google Scholar 

  • Halberg F, Schramm A, Pusch HI, Franke H, Cugini P, Scavo D (1980) More prominent circadian amplitude (than any MESOR)-decrease characterizes serum prolactin in human aging. Chronobiologia 7: 132–133

    Google Scholar 

  • Halberg F, Cornelissen G, Sothern RB, Wallach LA, Halberg E, Ahlgren A, Kuzel M, Radke A, Barbosa J, Goetz F, Buckley J, Mandel J, Schuman L, Haus E, Lakatua D, Sackett L, Berg H, Wendt HW, Kawasaki T, Ueno M, Uezono K, Matsuoka M, Omae T, Tarquini B, Cagnoni M, Garcia Sainz M, Perez Vega E, Wilson D, Griffiths K, Donati L, Tatti P, Vasta M, Locatelli J, Camagna A, Lauro R, Tritsch G, Wetterberg L (1981) International geographic studies of oncological interest on chronobiological variables. In: Kaiser HN (ed) Neoplasma — comparative pathology of growth in animals, plants, and man. Wiley, New York, pp 553–596

    Google Scholar 

  • Halberg F, Cornelissen G, Bakken E (1990) Caregiving merged with chronobiologie outcome assessment, research and education in health maintenance organizations (HMOs). In: Hayes DK, Pauly JE, Reiter RJ (eds) Chronobiology: its role in clinical medicine, general biology, and agriculture, part B. Wiley-Liss, New York, pp 491–549

    Google Scholar 

  • Halberg F, Halberg E, Halberg J, Ikonomov O, Otsuka K, Holte J, Tamura K, Saito Y, Hata Y, Uezono K, Wang ZR, Xue ZN, del Pozo F, Hillman DC, Samayoa W, Bakken E, Cornelissen G (1991) Womb to tomb blood pressure (BP) monitoring: are single or even 24-hour measurements enough? Proc Assn Adv Med Instr, Washington DC, p 38

    Google Scholar 

  • Halliwell B (1992) Reactive oxygen species and the central nervous system. J Neurochem 59: 1609–1623

    Article  PubMed  CAS  Google Scholar 

  • Happenbrowers T, Ugartechca JC, Combs D, Hodgman JE, Harpe RM, Sterman MB (1978) Studies of maternal-fetal interaction during the last trimester of pregnancy: ontogenesis of the basic rest-activity cycle. Exp Neurol 61: 136–153

    Article  Google Scholar 

  • Harmon D (1992) Free radical theory of aging. Mutat Res 275: 257–266

    Article  Google Scholar 

  • Hartman ML, Veldhuis JD, Thorner MO (1993) Normal control of growth hormone secretion. Horm Res 40: 37–47

    Article  PubMed  CAS  Google Scholar 

  • Haus E, Touitou Y (1994a) Chronobiology in laboratory medicine. In: Touitou Y, Haus E (eds) Biologic rhythms in clinical and laboratory medicine. Springer, Berlin Heidelberg New York, pp 673–708

    Google Scholar 

  • Haus E, Touitou Y (1994b) Principles of clinical chronobiology. In: Touitou Y, Haus E (eds) Biologic rhythms in clinical and laboratory medicine. Springer, Berlin Heidelberg New York, pp 6–34

    Google Scholar 

  • Haus E, Lakatua DJ, Halberg F, Halberg E, Cornelissen G, Sackett LL, Berg HG, Kawasaki T, Ueno M, Uezono K, Matsouka M, Omae T (1980) Chronobiological studies of plasma prolactin in women in Kyushu, Japan and Minnesota, USA. J Clin Endocrinol Metab 51: 632–640

    Google Scholar 

  • Haus E, Lakatua DJ, Swoyer J, Sackett-Lundeen L (1983) Chronobiology in hematology and immunology. Am J Anat 168: 467–517

    Article  PubMed  CAS  Google Scholar 

  • Haus E, Lakatua DJ, Sackett-Lundeen L, Swoyer J (1984) Chronobiology in laboratory medicine. In: Reitveld WT (ed) Clinical aspects of chronobiology. Bakker, Baarn, pp 13–82

    Google Scholar 

  • Haus E, Nicolau GY, Lakatua DJ, Bogdan C, Popescu M, Sackett-Lundeen L, Fraboni A, Petrescu E (1988a) Circadian rhythm parameters of clinical and endocrine functions in elderly subjects under treatment with various commonly used drugs. In: Reinberg A, Smolensky M, Labrecque G (eds) Annual review of chronopharmacology. Pergamon, New York, pp 77–80

    Google Scholar 

  • Haus E, Nicolau G, Lakatua DJ, Sackett-Lundeen L (1988b) Reference values for chronopharmacology. Annu Rev Chronopharm 4: 333–424

    CAS  Google Scholar 

  • Haus E, Nicolau G, Lakatua DJ, Sackett-Lundeen L, Petrescu E (1989) Circadian rhythm parameters of endocrine functions in elderly subjects during the seventh to the ninth decade of life. Chronobiologia 16 (4): 331–352

    PubMed  CAS  Google Scholar 

  • Haus E, Dumitriu L, Nicolau GY, Lakatua, D, Berg H, Petrescu L, Sackett-Lundeen L, Reilly R (1995a) Time relation of circadian rhythms in plasma dehydroepiandrosterone and dehydroepiandrosterone-sulfate to ACTH, cortisol, and 11-desoxycortisol. World Conference on Chronobiology and Chronotherapeutics, Italy, Sept 1995 (abstract)

    Google Scholar 

  • Haus E, Nicolau GY, Ghinea E, Dumitriu L, Petrescu E, Sackett-Lundeen L (1996a) Stimulation of the secretion of dehydroepiandrosterone by melatonin in mouse adrenals in vitro. Life Sciences 58: 263–267

    Article  CAS  Google Scholar 

  • Haus E, Sackett-Lundeen L, Lakatua DJ, Lundeen W, Halberg F, Cornelissen G, Uezono K, Omae T, Kawasaki T (1996b) Circadian rhythm in pulsatile secretion characteristics of plasma cortisol and prolactin in American and Japanese women (in press)

    Google Scholar 

  • Hayes B, Czeisler CA (1994) Chronobiology of human sleep and sleep disorders. In: Touitou Y, Haus E (eds) Biologic rhythms in clinical and laboratory medicine. Springer, Berlin Heidelberg New York, pp 256–264

    Google Scholar 

  • Hellbrügge T (1960) The development of circadian rhythms in infants. Cold Spring Harb Symp Quant Biol 25: 311–323

    Article  Google Scholar 

  • Hellbrügge T (1974) The development of circadian and ultradian rhythms of premature and full term infants. In: Scheving LE, Halberg F, Pauly JE (eds) Chronobiology. Igaku Shoin, Tokyo, p 339–341

    Google Scholar 

  • Hequet B, Meynadier J, Bonneterre J, Adenis L (1984) Circadian rhythm in cisplatin binding of plasma proteins. Annu Rev Chronopharm 1: 115–118

    Google Scholar 

  • Hildebrandt G, Emde L, Geyer F, Weimann H (1980) Zur Frage der periodischen Gliederung adaptives Prozesse. Z Phys Med 9: 90–92

    Google Scholar 

  • Ho KK, Hoffman DM (1993) Aging and growth hormone. Horm Res 40: 80–86

    Article  PubMed  CAS  Google Scholar 

  • Horan MA (1994) Aging, injury and the hypothalamic-pituitary-adrenal axis. Ann N Y Acad Sci 719: 285–290

    Article  PubMed  CAS  Google Scholar 

  • Huether G (1994) Melatonin synthesis in the gastrointestinal tract and the impact of nutritional factors on circulating melatonin. Ann N Y Acad Sci 719: 146–158

    Article  PubMed  CAS  Google Scholar 

  • Humbert W, Pevet P (1993) The decrease of pineal melatonin production with age. Causes and consequences. Ann N Y Acad Sci 719: 43–63

    Google Scholar 

  • Iguchi H, Kato KI, Ibayashi H (1982) Age dependent reduction in serum melatonin concentrations in healthy human subjects. J Clin Endocrinol Metab 55: 27–29

    Article  CAS  Google Scholar 

  • Isaacson RJ (1959) Investigation of some of the factors involved in the closure of the secondary palate. Thesis, University of Minnesota, Minneapolis

    Google Scholar 

  • Jundell I (1904) Uber die nykthemeralen Temperatur-Schwankungen im ersten Lebensjahre des Menschen. Jahrb Kinderheilkd 59: 521–619

    Google Scholar 

  • Kanabrocki EL, Sothern RB, Scheving LE, Vesley DL, Tsai TH, Shelstad J, Cournoyer C, Greco J, Mermall H, Ferlin H, Nemchausky BM, Bushnell D, Kaplan E, Kahn S, Augustine G, Holmes E, Rumbyrt J, Sturtevant RP, Sturtevant F, Bremner F, Third JLHC, McCormick JB, Dawson S, Sackett-Lundeen L, Haus E, Halberg F, Pauly JE, Olwin JH (1990) Reference values for circadian rhythms of 98 variables in clinically healthy men in the fifth decade of life. Chronobiol Int 7: 445–461

    Article  PubMed  CAS  Google Scholar 

  • Karki NT (1956) The urinary excretion of noradrenaline and adrenaline in different age groups; its diurnal variation and effect of muscular work on it. Acta Physiol Scand 39 [Suppl 132]: 1–96

    CAS  Google Scholar 

  • Kirkland JL, Lye M, Levy DW, Banerjee AK (1983) Pattern of urine flow and electrolyte excretion in healthy elderly people. Br Med J 287: 1665–1667

    Article  CAS  Google Scholar 

  • Kleitman N (1963) Sleep and wakefulness. University of Chicago, Chicago

    Google Scholar 

  • Kleitman N, Engelman TG (1953) Sleep characteristics of infants. J Appl Physiol 6: 269–282

    PubMed  CAS  Google Scholar 

  • Lakatta VG, Gerstenblith G, Angell CS, Shock MW, Weisfeldt ML (1975) Diminished inotropic response of aged myocardium to catecholamines. Circ Res 36 (2): 262–269

    Article  PubMed  CAS  Google Scholar 

  • Lakatua DJ, Nicolau GY, Bogdan C, Petrescu E, Sackett-Lundeen L, Irvine PW, Haus E (1984) Circadian endocrine time structure in humans above 80 years of age. J Gerontol 39: 654–684

    Article  Google Scholar 

  • Lakatua DJ, Nicolau GY, Sackett-Lundeen L, Petrescu E, Ortmeier T, Haus E (1992) Circadian rhythm in adrenal response to endogenous ACTH in clinically healthy subjects of different ages. Proceedings of the 5th international conference on chronopharmacology, Amelia Island, FL, USA, abstracts, p IX - 1

    Google Scholar 

  • Lemmer B (1989) Circadian rhythms in the cardiovascular system. In: Arendt J, Minors D, Waterhouse J (eds) Biologic rhythms in clinical practice. Wright, London, pp 51–70

    Google Scholar 

  • Levi F, Halberg F (1982) Circaseptan (about 7-day) bioperiodicity — spontaneous and reactive and the search for pacemakers. Ric Clin Lab 12: 323–370

    PubMed  CAS  Google Scholar 

  • Lieberman HR, Wurtman JJ, Teicher MH (1989) Circadian rhythms of activity in healthy young and elderly humans. Neurobiol Aging 10: 259–265

    Article  PubMed  CAS  Google Scholar 

  • Lobban M, Tredre B (1964) Diurnal rhythms of renal excretion and of body temperature in aged subjects. J Physiol (Lond) 170: 29

    Google Scholar 

  • Loria RM, Padgett DA (1992) Androstenediol regulates systemic resistance against lethal infections in mice. Arch Virol 127: 103–115

    Article  PubMed  CAS  Google Scholar 

  • Lungu A, Nicolau GY (1973) Circannual rhythm of thyroid function in rat. Rev Roum Endocrinol 10: 365–372

    Google Scholar 

  • Lungu A, Nicolau GY, Cocu F, Teodoru V, Dinu I (1966) Protein-bound iodine variations and spontaneous atmospheric temperature oscillations. Rev Roum Endocrinol 3: 279–282

    Google Scholar 

  • Markey SP, Higa S, Shih S, Danforth DN, Tamarkin L (1985) The correlation between plasma melatonin levels and urinary 6-hydroxymelatonin excretion. Clin Chim Acta 150: 221–225

    Article  PubMed  CAS  Google Scholar 

  • Martin du Pan R (1974) Some clinical applications of our knowledge of the evolution of the circadian rhythm in infants. In: Scheving LE, Halberg F, Pauly JE (eds) Chronobiology. Igaku Shoin, Tokyo, pp 138–144

    Google Scholar 

  • Martinez JL Jr, Vasquez BJ, Messing RB, Jensen RA, Liang KC, McGaugh JL (1981) Age-related changes in the catecholamines content of peripheral organs in male and female F344 rats. J Gerontol 36: 280–284

    Article  PubMed  CAS  Google Scholar 

  • Master AM, Jaffe HL (1952) Factors in the onset of coronary occlusion and coronary insufficiency. JAMA 148: 794–798

    Article  CAS  Google Scholar 

  • Meis PJ (1994) Chronobiology of pregnancy and the perinatal time span. In: Touitou Y, Haus E (eds) Biologic rhythms in clinical and laboratory medicine. Springer, Berlin Heidelberg New York, pp 158–166

    Google Scholar 

  • Menna-Barreto L, Benedito-Silva AA, Marques N, Morato de Andrade MM, Louzada F (1993) Ultradian components of the sleep-wake cycle in babies. Chronobiol Int 10: 103–108

    Article  PubMed  CAS  Google Scholar 

  • Milcu AE, Bogdan C, Nicolau GY, Cristea A (1978) Cortisol circadian rhythm in 70100 year old subjects. Rev Roum Med Endocrinol 16: 29–39

    CAS  Google Scholar 

  • Mitler M, Sokolove P, Lund R (1975) Activity-inactivity and wakefulness-sleep in mice: induced changes in cyclic relationships by prolonged exposure to constant conditions. Sleep Res 4: 267

    Google Scholar 

  • Moline ML, Pollak CP, Monk TH, Lester LS, Wagner DR, Zendell SM, Graeber RC, Salter CA, Hirsch E (1992) Age related differences in recovery from simulated jet lag. Sleep 14: 42–48

    Google Scholar 

  • Monk TH, Buysse DJ, Reynolds CF III, Kupfer DJ (1993) Inducing jet lag in older people: adjusting to a 6-hour phase advance in routine. Exp Gerontol 28: 119–133

    Article  PubMed  CAS  Google Scholar 

  • Moore-Ede MC, Sulzman FM (1981) Internal temporal order. In: Aschoff J (ed) Biologic rhythms Plenum, New York, p 215 (Handbook of behavioral neurobiology, vol 4 )

    Google Scholar 

  • Muller JE, Stone PH, Turi SG, Rutherford JD, Czeisler CA, Parker C, Poole WK, Passamani E, Roberts R, Robertson T, Sobel BE, Willerson JT, Braunwald E, MILIS Study Group (1985) Circadian variation in the frequency of onset of acute myocardial infarction. N Engl J Med 313: 1315–1322

    Article  PubMed  CAS  Google Scholar 

  • Muller JE, Ludmer PL, Willich SN, Tofler JH, Aylmer G, Klangos I, Stone PI (1987) Circadian variation in the frequency of sudden cardiac death. Circulation 75: 131–138

    Article  PubMed  CAS  Google Scholar 

  • Munakata M, Imai Y, Abe K, Sasaki S, Minami N, Hashimoto J, Sakuma H, Ichijo T, Sekina M, Yoshizawa M, Sekina H (1991) Assessment of age-dependent changes in circadian blood pressure rhythm in patients with essential hypertension. J Hypertens 9: 407–415

    Article  PubMed  CAS  Google Scholar 

  • Munan L, Kelly A (1979) Age dependent changes in blood monocyte populations in man. Clin Exp Immunol 35: 161–162

    PubMed  CAS  Google Scholar 

  • Murri L, Barreca T, Cerone G, Massetani R, Galamini A, Baldassarre M (1980) The 24 h pattern of human prolactin and growth hormone in healthy elderly subjects. Chronobiologia 7: 87–92

    PubMed  CAS  Google Scholar 

  • Nakai T, Yamada R (1983) Urinary catecholamine excretion by various age groups with special reference to clinical value of measuring catecholamines in newborns. Pediatr Res 17: 456–460

    Article  PubMed  CAS  Google Scholar 

  • Nakazawa Y, Nonaka K, Nishida N, Hayashida N, Miyahara Y, Kotorii T, Matsuoka K (1991) Comparison of body temperature rhythms between healthy elderly and healthy young adults. Jpn J Psychiatry 45: 37–43

    CAS  Google Scholar 

  • Nasello-Paterson C, Natale R, Connors G (1988) Ultrasonic evaluation of fetal body movements over twenty-four hours in the human fetus at twenty-four to twenty-eight weeks’ gestation. Am J Obstet Gynecol 158: 312–316

    PubMed  CAS  Google Scholar 

  • Nelson W, Bingham C, Haus E, Lakatua DJ, Kawasaki T, Halberg F (1980) Rhythm-adjusted age effects in a concomitant study of twelve hormones in blood plasma of women. J Gerontol 35 (4): 512–519

    Article  PubMed  CAS  Google Scholar 

  • Nicolau GY, Haus E (1989) Chronobiology of the endocrine system. Rev Roum Med Endocrinol 27 (3): 153–183

    CAS  Google Scholar 

  • Nicolau GY, Haus E (1994) Chronobiology of the hypothalamic-pituitary-thyroid axis. In: Touitou Y, Haus E (eds) Biologic rhythms in clinical and laboratory medicine. Springer, Berlin Heidelberg New York, pp 330–347

    Google Scholar 

  • Nicolau GY, Lakatua D, Sackett-Lundeen L, Haus E (1984) Circadian and circannual rhythms of hormonal variables in elderly men and women. Chronobiol Int 1 (4): 301–319

    Article  PubMed  CAS  Google Scholar 

  • Nicolau GY, Haus E, Lakatua DJ, Bogdan C, Sackett-Lundeen L, Popescu M, Berg H, Petrescu E, Robu E (1985a) Circadian and circannual variations of FSH, LH, testosterone, dehydroepiandrosterone-sulfate (DHEA-S) and 17-hydroxy progesterone (17 OH-prog) in elderly men and women. Rev Roum Med Endocrinol 23: 223–246

    CAS  Google Scholar 

  • Nicolau GY, Haus E, Lakatua D, Plinga L, Sackett-Lundeen L, Berg H, Petrescu E (1985b) Circadian rhythm in plasma immunoreactive somatomedin-C in children. Rev Roum Med Endocrinol 23: 97–103

    CAS  Google Scholar 

  • Nicolau GY, Haus E, Lakatua D, Sackett-Lundeen L, Bogdan C, Plinga L, Petrescu E, Ungureanu E, Robu E (1985c) Differences in the circadian rhythm parameters of urinary free epinephrine, norepinephrine, and dopamine between children and elderly subjects. Rev Roum Med Endocrinol 23: 189–199

    CAS  Google Scholar 

  • Nicolau GY, Haus E, Bogdan C, Plinga L, Robu E, Ungureanu E, Sackett-Lundeen L, Petrescu E (1986) Circannual rhythms of systolic and diastolic blood pressure in elderly subjects and in children. Rev Roum Med Endocrinol 24: 97–107

    CAS  Google Scholar 

  • Nicolau GY, Dumitriu L, Plinga L, Petrescu E, Sackett-Lundeen L, Lakatua DJ, Haus E (1987a) Circadian and circannual variations of thyroid function in children 11 f 1.5 years of age with and without endemic goiter. In: Pauly JE, Scheving LE (eds) Progress in clinical and biological research. Liss, New York, pp 229–247 (Advances in chronobiology, vol 227B )

    Google Scholar 

  • Nicolau GY, Haus E, Lakatua DJ, Bogdan C, Plinga L, Irvine P, Popescu M, Petrescu E, Sackett-Lundeen L, Swoyer J, Robu E (1987b) Chronobiology of serum iron concentrations in subjects of different ages at different geographic locations. Rev Roum Med Endocrinol 25: 63–82

    CAS  Google Scholar 

  • Nicolau GY, Haus E, Popescu M, Sackett-Lundeen L, Petrescu E (1991) Circadian, weekly, and seasonal variations in cardiac mortality, blood pressure, and catecholamine excretion. Chronobiol Int 8: 149–159

    Article  PubMed  CAS  Google Scholar 

  • Nielsen H, Blom J, Larsen SO (1984) Human blood monocyte function in relation to age. Acta Pathol Microbiol Immunol Scand [C] 92: 5–10

    CAS  Google Scholar 

  • Nowak JZ, Zurawska E, Zawilska J (1989) Melatonin and its generating system in vertebrate retina: circadian rhythm, effect of environmental lighting and interaction with dopamine. Neurochem Int 14: 397–406

    Article  PubMed  CAS  Google Scholar 

  • Oddie TH, Klein AH, Foley TP, Fisher DA (1979) Variation in values for iodothyronine hormones, thyrotropin and thyroxin binding globulin in normal umbilical cord serum with season and duration of storage. Clin Chem 25: 1251–1253

    PubMed  CAS  Google Scholar 

  • Ogata K, Sasaki T, Murakami N (1966) Central nervous and metabolic aspects of body temperature regulation. Bull Inst Const Med Kumamoto Univ [Suppl] 16: 1–67

    Google Scholar 

  • Otsuka K, Kitazumi T, Matsubayashi K, Kawamoto A, Sadakane N, Chikamori T, Kuzume O, Shimada K, Ogura H, Ozawa T (1989) Age-related alterations in the circadian pattern of blood pressure. Am J Noninvas Cardiol 3: 159–165

    Google Scholar 

  • Panofsky H, Halberg F (1961) II. Thermo-variance specta; simplified computational example and other methology. Exp Med Surg 19: 323–338

    Google Scholar 

  • Parra A, Ramirez del Angel A, Cervantes C, Sanchez M (1980) Urinary excretion of catecholamines in healthy subjects in relation to body growth. Acta Endocrinol (Copenh) 94: 546–551

    CAS  Google Scholar 

  • Patel IH, Venkataramanan R, Levy RH, Visranathan CT, Ojemann LM (1982) Diurnal oscillations in plasma protein binding of valporic acid. Epilepsia 23 (3): 283–290

    Article  PubMed  CAS  Google Scholar 

  • Patrick J, Challis J (1980) Measurement of human fetal breathing movements in healthy pregnancies using a realtime scanner. Semin Perinatol 4: 275–286

    PubMed  CAS  Google Scholar 

  • Patrick J, Fetherston W, Vick H, Voegelin R (1978) Human fetal breathing movements and gross fetal body movements at weeks 34 to 35 of gestation. Am J Obstet Gynecol 130: 693–699

    PubMed  CAS  Google Scholar 

  • Patrick J, Cambell K, Carmichael L, Probert C (1982) Influence of maternal heart rate and gross fetal body movements on the daily pattern of fetal heart rate near term. Am J Obstet Gynecol 144: 533–538

    PubMed  CAS  Google Scholar 

  • Peng MT, Jiang MJ, Hsü HK (1980) Changes in running-wheel activity, eating and drinking and their day-night distributions throughout the life span of the rat. J Gerontol 35: 339–347

    Article  PubMed  CAS  Google Scholar 

  • Pierpaoli W, Regelson W (1994) Pineal control of aging: effect of melatonin and pineal grafting on mice. Proc Natl Acad Sci USA 91: 787–791

    Article  PubMed  CAS  Google Scholar 

  • Pierpaoli W, Dall’ara A, Pedrino E, Regelson W (1991) The pineal control of aging. The effects of melatonin and pineal grafting on the survival of older mice. Ann N Y Acad Sci 621: 291–313

    Google Scholar 

  • Pittendrigh C, Daan S (1974) Circadian oscillations in rodents: a systematic increase of their frequency with age. Science 186: 548

    Article  PubMed  CAS  Google Scholar 

  • Preston F (1973) Further sleep problems in airline pilots on world-wide schedules. Aerosp Med 44: 775–782

    PubMed  CAS  Google Scholar 

  • Refinetti R, Menaker M (1992) The circadian rhythm in body temperature. Physiol Behav 51: 613–637

    Article  PubMed  CAS  Google Scholar 

  • Regelson W, Loria R, Kalimi M (1988) Hormonal intervention: “buffer hormones” or “state dependency”. The role of dehydroepiandrosterone ( DHEA), thyroid hormone, estrogen and hypophysectomy in aging. Ann NY Acad Sci 521: 260–273

    Google Scholar 

  • Regelson W, Kalimi M, Loria R (1990) DHEA: some thoughts as to its biologic and clinical action. In: Kalimi M, Regelson W (eds) The biologic role of dehydroepiandrosterone (DHEA). De Gruyter, New York, pp 405–445

    Google Scholar 

  • Regelson W, Loria R, Kalimi M (1994) Dehydroepiandrosterone (DHEA) — the “mother steroid”. I. Immunologic action. Ann N Y Acad Sci 719: 553–563

    Google Scholar 

  • Reinberg A, Gervais P, Halberg F, Gaultier M, Poynette N, Abulker C, Dupont J (1973) Mortalité des adultes: rythmes circadiens et circannuels. Nouv Presse Med 2: 289–294

    PubMed  CAS  Google Scholar 

  • Reinberg A, Lagoguey M, Cesselin F, Touitou Y, Legrand JC, Delassalle A, Antreassian J, Lagoguey A (1978) Circadian and circannual rhythms in plasma hormones and other variables of five healthy young human males. Acta Endocrinol (Copenh) 88: 417–427

    CAS  Google Scholar 

  • Reiter RJ, Poeggeler B, Tan DX, Chen LD, Manchester LC, Guerrero JM (1993) Antioxidant capacity of melatonin: a novel action not requiring a receptor. Neuroendocrinol Lett 15: 103–116

    CAS  Google Scholar 

  • Reiter RJ, Tan D, Poeggeler B, Menendez-Pelaez A, Chen L, Saarela S (1994) Melatonin as a free radical scavenger: implications for aging and age-related diseases. Ann N Y Acad Sci 719: 1–12

    Article  PubMed  CAS  Google Scholar 

  • Reuss S, Spies C, Schroder H, Vollrath L (1990) The aged pineal gland: reduction in pinealocyte number and adrenergic innervation in male rats. Exp Gerontol 25: 183–188

    Article  PubMed  CAS  Google Scholar 

  • Richardson B, Natale R, Patrick J (1979) Human fetal breathing activity during effectively induced labor at term. Am J Obstet Gynecol 133: 247–255

    PubMed  CAS  Google Scholar 

  • Richardson GS (1990) Circadian rhythms and aging. In: Schneider EL, Rowe JW (eds) Handbook of the the biology of aging, 3rd edn. Academic, San Diego, p 275

    Chapter  Google Scholar 

  • Roberts NA, Barton RN, Horan MA, White A (1990) Adrenal function after upper femoral fracture in elderly people: persistence of stimulation and the roles of adrenocorticotrophic hormone and immobility. Age Ageing 19 (5): 304–310

    Article  PubMed  CAS  Google Scholar 

  • Rogowski P, Siersback-Nielsen K, Hansen M (1974) Seasonal variations in neonatal thyroid function. J Clin Endocrinol Metab 39: 919–922

    Article  PubMed  CAS  Google Scholar 

  • Rose SR, Nisula BC (1989) Circadian variation of thyrotropin in childhood. J Clin Endocrinol Metab 68: 1086–1090

    Article  PubMed  CAS  Google Scholar 

  • Rowe JW, Troen BR (1980) Sympathetic nervous system and aging in man. Endocr Rev 1: 167–179

    Article  PubMed  CAS  Google Scholar 

  • Rubin PC, Scott PJW, McLean K, Reid JL (1982) Noradrenaline release and clearance in relation to age and blood pressure in man. Eur J Clin Invest 12: 121–125

    Article  PubMed  CAS  Google Scholar 

  • Rudman D, Feller AG, Nagraj HS, Gergans GA, Lalitha PY, Goldberg AF, Schlenker RA, Cohn L, Rudman IW, Mattson DE (1990) Effects of human GH in men over 60 years old. N Engl J Med 323 (1): 1–6

    Article  PubMed  CAS  Google Scholar 

  • Sack RL, Lewy AJ, Erb DE, Vollmer WM, Singer CM (1986) Human melatonin production decreases with age. J Pineal Res 3: 379–388

    Article  PubMed  CAS  Google Scholar 

  • San Martin M, Touitou Y (1996) Day-night differences in the effects of gonadal hormones on melatonin release from perfused rat pineals. Evidence of a circadian control. Steroids 61: 27–32

    Google Scholar 

  • Sassin J, Frantz AG, Kapen S, Weitzman E (1973) The nocturnal rise of human prolactin is dependent on sleep. J Clin Endocrinol Metab 37: 436–440

    Article  PubMed  CAS  Google Scholar 

  • Sauerbier I (1981) Circadian system and teratogenicity of cytostatic drugs. Prog Clin Res 59C: 143–149

    Google Scholar 

  • Sauerbier I (1983) Embryotoxische Wirkung von Zytostatika in Abhängigkeit von der Tageszeit der Applikation bei Mäusen. Verh Anat Ges 77: 147–149

    Google Scholar 

  • Sauerbier I (1986) Circadian variation in teratogenic response to dexamethasone in mice. Drug Chem Toxicol 9: 25–31

    Article  PubMed  CAS  Google Scholar 

  • Sauerbier I (1987) Circadian modification of ethanol damage in utero in mice. Am J Anat 178: 170–174

    Article  PubMed  CAS  Google Scholar 

  • Sauerbier I (1988) Circadian influence on ethanol-induced intrauterine growth retardation in mice. Chronobiol Int 5: 211–216

    Article  PubMed  CAS  Google Scholar 

  • Sauerbier I (1989) Embryotoxicity of drugs: possible mechanisms of action. In: Lemmer B (ed) Chronopharmacology. Cellular and biochemical interactions. Dekker, New York, pp 683–697

    Google Scholar 

  • Sauerbier I (1994) Rhythms in drug-induced teratogenesis. In: Touitou Y, Haus E (eds) Biological rhythms in clinical medicine. Springer, Berlin Heidelberg New York, pp 151–157

    Google Scholar 

  • Schmidt R (1978) Zur zircadianen Modifikation der pränatal-toxischen Wirkung von Cyclophosphamid. Biol Rundsch 16: 243–248

    Google Scholar 

  • Schramm A, Pusch HJ, Franke H, Halberg F, Cugini P, Scavo D (1980a) Circadian exploration of serum cortisol (F) and pituitary growth hormone (GH) as function of age and sex. In: Proceedings of the XXVIIIth international congress of physiological sciences. Budapest, 28:38 (abstract 3076)

    Google Scholar 

  • Schramm A, Pusch HJ, Müller W, Franke H, Halberg F, Cuginin P, Scavo D (1980b) Circadian exploration of serum prolactin, growth hormone, cortisol, and aldosterone as function of age and sex. In: Proceedings of the XXVth international congress of internal medicine. Hamburg, 15:783 (abstract 3642)

    Google Scholar 

  • Schultz S, Nyce JW (1991) Inhibition of isoprenylation and p21 membrane association by dehydroepiandrosterone in human colonic adenocarcinoma cells in vitro. Cancer Res 51: 6563–6567

    Google Scholar 

  • Schwartz AG, Whitcomb JM, Nyce JW, Lewbart ML, Pashko LL (1988) Dehydroepiandrosterone and structural analogs: a new class of cancer chemopreventive agents. Adv Cancer Res 51: 391–423

    Article  PubMed  CAS  Google Scholar 

  • Sharma M, Palacios-Bois J, Schwartz G, Iskandar H, Thakur M, Quirion R, Nair NP (1989) Circadian rhythms of melatonin and cortisol in aging. Biol Psychiatry 25: 305–319

    Article  PubMed  CAS  Google Scholar 

  • Sherman B, Wysham C, Pfohl B (1985) Age-related changes in the circadian rhythm of plasma cortisol in man. J Clin Endocrinol Metab 61: 439–443

    Article  PubMed  CAS  Google Scholar 

  • Shibasaki T, Shizume K, Masuda A, Nakahara M, Jibiki K, Demura H, Wakabayashi I, Ling N (1984) Age related changes in plasma growth hormone response to growth hormone releasing factor in man. J Clin Endocrinol Metab 58 (1): 212–214

    Article  PubMed  CAS  Google Scholar 

  • Sisson TRC, Root AW, Kendall N (1974) Biologic rhythm of plasma human growth hormone in newborns of low birth weight. In: Scheving LE, Halberg F, Pauly JE (eds) Chronobiology. Igaku Shoin, Tokyo, pp 348–352

    Google Scholar 

  • Skene DJ, Vivien-Roels B, Sparks DL, Hunsaker JC, Pévet P, Ravid D, Swaab DF (1990) Daily variation in the concentration of melatonin and 5-methoxytryptophol

    Google Scholar 

  • in the human pineal gland• effect of age and Alzheimer’s disease. Brain Res 528:170–174

    Google Scholar 

  • Smaaland R, Sothern RB (1994) Circadian cytokinetics of murine and human bone marrow and human cancer. In: Hrushesky WJM (ed) Circadian cancer therapy. CRC Press, Boca Raton, pp 119–163

    Google Scholar 

  • Smith E (1861) Draft of historic review: from periodic fever to chronobiology. P Lavie, personal communication

    Google Scholar 

  • Smolensky MH, Sargent FS II (1972) Chronobiology of the life sequence. In: Itoh S, Ogata K, Yoshimura H (eds) Advances in climatic physiology. Igaku Shoiu, Tokyo, pp 281–318

    Chapter  Google Scholar 

  • Smolensky MH, Tatar SE, Bergman SA, Losman JG, Barnard CN, Dacso CC, Kraft IA (1976) Circadian rhythmic aspects of human cardiovascular function: a review by chronobiologic statistical methods. Chronobiologia 3: 337–371

    PubMed  CAS  Google Scholar 

  • Sonka J (1976) Dehydroepiandrosterone metabolic effects. ACTA Univ Carol 71: 9–137

    Google Scholar 

  • Sothern RB, Halberg F (1986) Circadian and infradian blood pressure rhythms of a man 20 to 37 years of age. In: Halberg F, Reale L, Tarquini B (eds) Proceedings of the 2nd international conference on the medico-social aspects of chronobiology, Florence, 2 Oct 1984. Istituto Italiano di Medicine Sociale, Rome, pp 395–416

    Google Scholar 

  • Spieker C, Wienecke M, Grotemeyer K-H, Suss M, Barenbrock M, Zierden E, Rahn K-H, Zidek W (1991) Circadian blood pressure rhythms in elderly hypertensive patients. J Int Med Res 19: 342–347

    PubMed  CAS  Google Scholar 

  • Sterman MB (1967) Relationship of intrauterine fetal activity to maternal sleep stage. Exp Neurol [Suppl] 19: 98–106

    Article  Google Scholar 

  • Sturtevant RP, Garber SL (1985) Circadian exposure to ethanol affects the severity of cerebellar cell dysgenesis. Anat Rec 211: 187

    Google Scholar 

  • Sunderland T, Merrill CR, Harrington MG, Lawlor BA, Molchan SE, Martinez R, Murphy DL (1989) Reduced plasma dehydroepiandrosterone concentrations in Alzheimer’s disease (letter). Lancet 2 (2): 570

    Article  PubMed  CAS  Google Scholar 

  • Swoyer J, Irvine P, Sackett-Lundeen L, Conlin L, Lakatua DJ, Haus E (1989) Circadian hematologic time structure in the elderly. Chronobiol Int 6 (2): 131–137

    Article  PubMed  CAS  Google Scholar 

  • Tan DX, Chen LD, Poeggeler B, Manchester LC, Reiter RJ (1993) Melatonin: a potent, endogenous hydroxyl radical scavenger. Endocr J 1: 57–60

    Google Scholar 

  • Tepas DI, Duchon JC, Cersten AH (1993) Shiftwork and the older worker. Exp Aging Res 19 (4): 295–320

    Article  PubMed  CAS  Google Scholar 

  • Thomas DR, Miles A (1989) Melatonin secretion and age. Biol Psychiatry 25: 363–369

    Article  Google Scholar 

  • Thompson ME, Nicolau GY, Lakatua DJ, Sackett-Lundeen L, Plinga L, Bogdan C, Robu E, Ungureanu E, Petrescu E, Haus E (1987) Endocrine factors of blood pressure regulation in different age groups. In: Pauly JE, Scheving LE (eds) Advances in chronobiology, part B. Liss, New York, pp 79–95

    Google Scholar 

  • Ticher A, Sackett-Lundeen L, Ashkenazi IE, Haus E (1994) Human circadian time structure in subjects of different gender and age. Chronobiol Int 11 (6): 349–355

    Article  PubMed  CAS  Google Scholar 

  • Ticher A, Haus E, Ron IG, Sackett-Lundeen L, Ashkenazi IE (1995) The pattern of hormonal circadian time structure (acrophase) as an indicator of breast cancer risk. (submitted for publication)

    Google Scholar 

  • Timiras PS, Quay WD, Vernadakis A (eds) (1995) Hormones and aging. CRC Press, Boca Raton

    Google Scholar 

  • Touitou Y (1987) Le vieillissement des rythmes biologiques chez l’homme. Pathol Biol 35 (6): 1005–1012

    PubMed  CAS  Google Scholar 

  • Touitou Y, Haus E (1994a) Biologic rhythms from biblical to modern times. A preface. In: Touitou Y, Haus E (eds) Biologic rhythms in clinical and laboratory medicine. Springer, Berlin Heidelberg New York, pp 1–5

    Google Scholar 

  • Touitou Y, Haus E (1994b) Aging of the human endocrine and neuroendocrine time structure. Ann N Y Acad Sci 719: 378–397

    Article  PubMed  CAS  Google Scholar 

  • Touitou Y, Touitou C, Bogdan A, Beck H, Reinberg A (1978) Serum magnesium circadian rhythm in human adults with respect to age, sex and mental status. Clin Chim Acta 87: 35–41

    Article  PubMed  CAS  Google Scholar 

  • Touitou Y, Fevre M, Lagoguey M, Carayon A, Bogdan A, Reinberg A, Beck H, Cesselin F, Touitou C (1981) Age and mental health-related circadian rhythm of plasma levels of melatonin, prolactin, luteinizing hormone and follicule-stimulating hormone in man. J Endocrinol 91: 467–475

    Article  PubMed  CAS  Google Scholar 

  • Touitou Y, Sulon J, Bogdan A, Touitou C, Reinberg A, Beck H, Sodoyez JC, Van Cauwenberge H (1982) Adrenal circadian system in young and elderly human subjects: a comparative study. J Endocrinol 93: 201–210

    Article  PubMed  CAS  Google Scholar 

  • Touitou Y, Carayon A, Reinberg A, Bogdan A, Beck H (1983a) Differences in the seasonal rhythmicity of plasma prolactin in elderly human subjects. Detection in women but not in men. J Endocrinol 96: 65–71

    Google Scholar 

  • Touitou Y, Sulon J, Bogdan A, Reinberg A, Sodoyez JC, Demey-Ponsart E (1983b) Adrenocortical hormones ageing and mental condition: seasonal and circadian rhythms of plasma 18-hydroxy-1 l-deoxycorticosterone, total and free cortisol and urinary corticosteroids. J Endocrinol 96: 53–64

    Article  PubMed  CAS  Google Scholar 

  • Touitou Y, Fevre M, Bogdan A, Reinberg A, De Prins J, Beck H, Touitou C (1984) Patterns of plasma melatonin with ageing and mental condition: stability of nycotohemeral rhythms and differences in seasonal variations. Acta Endocrinol (Copenh) 106: 145–151

    CAS  Google Scholar 

  • Touitou Y, Touitou C, Bogdan A, Reinberg A, Auzeby A, Beck H, Guillet P (1986) Differences between young and elderly subjects in seasonal and circadian variations of total plasma proteins and blood volume as reflected by hemoglobin, hematocrit, and erythrocyte counts. Clin Chem 32: 801–804

    PubMed  CAS  Google Scholar 

  • Townsley JD, Dubin IVH, Grannis GF, Gortman J, Crystle CD (1973) Circadian rhythms of serum and urinary estrogens in pregnancy J Clin Endocrinol 36: 289–295

    CAS  Google Scholar 

  • Trentini GP, DeGaetani C, Criscuolo M (1991) Pineal gland and aging. Aging 3:103–106 Trentini GP, Genazzani AR, Criscuolo M (1992) Melatonin treatment delays re-

    Google Scholar 

  • productive aging of female rat via the opiatergic system. Neuroendocrinology 56:364–370

    Google Scholar 

  • Tune G (1969) Sleep and wakefulness in 509 normal adults. Br J Med Psychol 42: 75–80

    Article  PubMed  CAS  Google Scholar 

  • Uezono K, Haus E, Swoyer J, Kawasaki T (1984) Circaseptan rhythms in clinically healthy subjects. In: Haus E, Kabat H (eds) Chronobiology 1981–1983. Karger, New York, pp 257–262

    Google Scholar 

  • Uezono K, Sackett-Lundeen L, Kawasaki T, Omae T, Haus E (1987) Circaseptan rhythm in sodium and potassium excretion in salt sensitive and salt resistant Dahl rats. Prog Clin Biol Res 227A: 297–307

    Google Scholar 

  • Vanderkar LD, Brownfield MS (1993) Serotonergic neurons and neuroendocrine function. News Physiol Sci 8: 202

    Google Scholar 

  • Vermeulen A (1980) Andrenal androgens and aging. In: Thijssen JHH, Siiteri PK (eds) Adrenal androgens. Raven, New York, pp 207–217

    Google Scholar 

  • Vestal RE, Wood AJ, Shand DG (1979) Reduced beta-adrenoceptor sensitivity in the elderly. Clin Pharmacol Ther 26(2)181–186

    Google Scholar 

  • Visser GHA, Carse EA, Goodman JDS, Johnson P (1982a) A comparison of episodic heart-rate patterns in the fetus and newborn. Br J Obstet Gynecol 89: 50–55

    Article  CAS  Google Scholar 

  • Visser GHA, Goodman JDS, Levine, Dawes GS (1982b) Diurnal and other cyclic variations in human fetal heart rate near term. Am J Obstet Gynecol 142: 535–544

    PubMed  CAS  Google Scholar 

  • Vitiello MV, Smallwood RG, Avery DH, Pascualy RA, Martin DC, Prinz PN (1986) Circadian temperature rhythms in young adult and aged men. Neurobiol Aging 7: 97–100

    Article  PubMed  CAS  Google Scholar 

  • Waldhauser F, Weiszenbacher G, Frisch H, Zeitlhuber U, Waldhauser M, Wurtman RJ (1984) Fall in nocturnal serum melatonin during prepuberty and pubescence. Lancet 1: 362–365

    Article  PubMed  CAS  Google Scholar 

  • Wallin BG, Sundlof G (1979) A quantitative study of muscle nerve sympathetic activity in resting normotensive and hypertensive subjects. Hypertension 1: 67–77

    Article  PubMed  CAS  Google Scholar 

  • Webb W (1969) Twenty-four hour sleep cycling. In: Kales A (ed) Sleep: physiology and pathology. Lippincott, Philadelphia, p 53

    Google Scholar 

  • Webb W, Swinburne H (1971) An observational study of sleep in the aged. Percept Mot Skills 32: 895–398

    Article  PubMed  CAS  Google Scholar 

  • Weigle WD (1975) Cyclical production of antibody as a regulatory mechanism in the immune response. Adv Immunol 21: 87–111

    Article  PubMed  CAS  Google Scholar 

  • Weitzman ED, Moline ML, Czeisler CA, Zimmerman JC (1982) Chronobiology of aging: temperature, sleep-wake rhythms and entrainment. Neurobiol Aging 3: 299–309

    Article  PubMed  CAS  Google Scholar 

  • Wessler R, Rubin M, Sollberger A (1976) Circadian rhythm of activity and sleep-wakefulness in elderly institutionalized patients. J Interdiscipl Cycle Res 7: 333

    Article  Google Scholar 

  • Weyer R (1975) The meaning of circadian rhythmicity with regard to aging. Verh Dtsch Ges Pathol 59: 160

    Google Scholar 

  • Weyer RA (1979) The circadian system of man. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Wilf-Miron R, Peleg L, Goldman B, Ashkenazi IE (1992) Rhythms of enzymatic activity in maternal and umbilical cord blood. Experientia 48: 520–523

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Cornélissen G, Tarquini B, Mainardi G, Cagnoni M, Fernandez JR, Hermida RC, Tamura K, Kato J, Kato K, Halberg F (1990) Circaseptan and circannual modulation of circadian rhythms in neonatal blood pressure and heart rate. In: Hayes DK, Pauly JE, Reiter RJ (eds) Chronobiology: its role in clinical medicine, general biology, and agriculture, part A. Wiley-Liss, New York, pp 643–652

    Google Scholar 

  • Yatsyk GV, Syutkina EV, Polyakov YA, Safin SR, Grigoriev AE, Tagbloom M, Halberg E, Halberg F (1991) Circadian variations in urinary Na+, K+, and 11oxycorticoid (11-OCS) excretion by premature infants. Biochim Clin 15: 156–157

    Google Scholar 

  • Yen SSC, Jaffe RB (eds) (1991) Reproductive endocrinology. Saunders, Philadelphia

    Google Scholar 

  • Zepelin H, MacDonald CS (1987) Age differences in autonomic variables during sleep. J Gerontol 42: 142–146

    Article  PubMed  CAS  Google Scholar 

  • Zhengrong W, Xuechuan S, Cornelissen G, Jinyi W, Ling M, Degni C, Zhennan X, Halberg F (1993) Doppler flurometer-assessed circadian rhythms in neonatal cardiac function, family history, and intrauterine growth retardation. Am J Perinatology 10: 119–125

    Article  Google Scholar 

  • Zurbrügg RP (1976) Hypothalamic-pituitary-adrenocortical regulation: a contribution to its assessment, development and disorders in infancy and childhood with special reference to plasma circadian rhythm. Karger, Basle (Monographs in paediatrics, vol 7 )

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Haus, E., Touitou, Y. (1997). Chronobiology of Development and Aging. In: Redfern, P.H., Lemmer, B. (eds) Physiology and Pharmacology of Biological Rhythms. Handbook of Experimental Pharmacology, vol 125. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09355-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09355-9_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08265-8

  • Online ISBN: 978-3-662-09355-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics