Skip to main content

Chemical Neuroanatomy of the Mammalian Circadian System

  • Chapter
Physiology and Pharmacology of Biological Rhythms

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 125))

Abstract

The fundamental functional unit of the nervous system is the neuron. Neurons in the central nervous system are organized into networks, or systems, which subserve specialized functions. The communication between neurons within a system, or with other systems, occurs at specialized points of functional contact, synapses. The mechanism of communication is the release of neuroactive substances from the presynaptic element which act on specialized receptor molecules on the postsynaptic element. Thus, neurons may be classified not only with respect to their morphology, location and inclusion in particular functional systems but on the basis of their use of particular neuroactive substances in synaptic transmission. This classification of neurons on the basis of the production of particular neuroactive substances is termed “chemical neuroanatomy.” Over the last 25 years, our knowledge of chemical neuro-anatomy has become very extensive, a fact exemplified by the existence of a Journal of Chemical Neuroanatomy and a long series of volumes which comprise the Handbook of Chemical Neuroanatomy Indeed, at this point we are able to specify at least one neuroactive substance for nearly all of the neuronal components of the mammalian brain. This has been extended recently to the circadian timing system (CTS) as will be described below.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aguilar-Roblero R, Morin LP, Moore RY (1994) Morphological correlates of circadian rhythm restoration induced by transplantation of the suprachiasmatic nucleus in hamsters. Exp Neurol 30: 250–260

    Article  Google Scholar 

  • Albers HE, Liou SY, Ferris CF, Stopa EG, Zoeller RT (1991) Neurochemistry of circadian timing. In: Klein DC, Moore RY,Reppert SM (eds) The suprachiasmatic nucleus: the mind’s clock. Oxford University Press, New York, pp 263–288

    Google Scholar 

  • Bredt DS, Snyder SH (1992) Nitric oxide, a novel neuronal messenger. Neuron 8: 3–11

    Article  PubMed  CAS  Google Scholar 

  • Card JP, Moore RY (1982) Ventral lateral geniculate nucleus efferents to the rat suprachiasmatic nucleus exhibit avian pancreatic polypetide-like immunoreactivity. J Comp Neurol 206: 390–396

    Article  PubMed  CAS  Google Scholar 

  • Card JP, Moore RY (1989) Organization of lateral geniculate-hypothalamic connections in the rat. J Comp Neurol 284: 135–147

    Article  PubMed  CAS  Google Scholar 

  • Card JP, Brecha N, Karten HJ, Moore RY (1981) Immunocytochemical localization of vasoactive intestinal polypeptide containing cells and processes in the suprachiasmatic nucleus of the rat: light and electron microscopic analysis. J Neurosci 1, 1289–1303

    PubMed  CAS  Google Scholar 

  • Cassone VM, Speh JC, Card JP, Moore RY (1988) Comparative anatomy of mammalian suprachiasmatic nucleus. J Biol Rhythms 3: 71–91

    Article  PubMed  CAS  Google Scholar 

  • Castel M, Belenkey S, Cohen S, Otterson OP, Storm-Mathisen J (1993) Glutamate-like immunoreactivity in retinal terminals of the mouse suprachiasmatic nucleus. Eur J Neurosci 5: 368–381

    Article  PubMed  CAS  Google Scholar 

  • DeVries MJ, Cardozo BN, van der Waut J, deWolf A, Maijer JH (1993) Glutamate immunoreactivity in terminals of the retinohypothalamic tract of the brown Norwegian rat. Brain Res 612: 231–237

    Article  CAS  Google Scholar 

  • Ding JM, Chen D, Weber ET, Faiman LE, Rea MA, Gillette MU (1994) Resetting the biological clock: mediation of nocturnal circadian shifts by glutamate and NO. Science 266: 1713–1717

    Article  PubMed  CAS  Google Scholar 

  • Foster RG, Provencio I, Hudson D, Fiske S, DeGrip W, Menaker M (1991) Circadian photoreception in the retinally degenerate mouse (rd/rd). J Comp Physiol [A] 169: 39–50

    CAS  Google Scholar 

  • Foster RG, Argamaso S, Coleman S et al (1993) Photoreceptors regulating circadian behavior: a mouse model. J Biol Rhythms 8: 517–523

    Google Scholar 

  • Gannon RL, Rea MA (1993) Glutamate receptor immunoreactivity in the rat suprachiasmatic nucleus. Brain Res 622: 337–342

    Article  PubMed  CAS  Google Scholar 

  • Gao B, Moore RY (1996) Glutamic acid decarboxylase message isoforms in human suprachiasmatic nucleus. J Biol Rhythms (in press)

    Google Scholar 

  • Gillette MU (1991) SCN electrophysiology in vitro: rhythmic activity and endogenous clock properties. In: Klein DC, Moore RY, Reppert SM (eds) The suprachiasmatic nucleus: the mind’s clock. Oxford University Press, New York, pp 125–143

    Google Scholar 

  • Gillette MU, DeMarco SJ, Ding JM, Gallman EA, Fairman LE, Liu C, McArthur AJ, Medanic M, Richard D, Cheng TK, Weber ET (1993) The organization of the suprachiasmatic circadian pacemaker of the rat and its modulation by neurotransmitters and modulators. J Biol Rhythms 8: S53–58

    PubMed  Google Scholar 

  • Hakim HJ, Philpot A, Silver R (1991) Circadian locomotor rhythms but not photo-periodic responses survive transection of SCN efferents in hamsters. J Biol Rhythms 6: 97–113

    Article  PubMed  CAS  Google Scholar 

  • Hendrickson AE, Wagoner N, Cowan WN (1972) An autoradiographic and electron microscopic study of retino-hypothalamic connections. Z Zellforsch ellforsch 135: 1–26

    Article  CAS  Google Scholar 

  • Hickey TL, Spear PD (1976) Retinogeniculate projections in hooded and albino rats. Exp Brain Res 24: 523–529

    Article  PubMed  CAS  Google Scholar 

  • Inouye SIT, Kawamura H (1979) Persistence of circadian rhythmicity in a mammalian hypothalamic “island” containing the suprachiasmatic nucleus. Proc Natl Acad Sci USA 962–5966

    Google Scholar 

  • Jacobowitz DM, Winsky L (1991) Immunocytochemical localization of calretinin in the forebrain of the rat. J Comp Neurol 304: 198–218

    Article  PubMed  CAS  Google Scholar 

  • Janik D, Mrosovsky N (1994) Intergeniculate leaflet lesions and behaviorally-induced shifts of circadian rhythms. Brain Res 651: 174–182

    Article  PubMed  CAS  Google Scholar 

  • Johnson RF, Moore RY, Morin LP (1988) Loss of entrainment and anatomical plasticity after lesions of the hamster retinohypothalamic tract. Brain Res 460: 29713

    Article  Google Scholar 

  • Klein DC, Moore RY (1979) Pineal N-acetyltransferase and hydroxyindole-o-methyltranferase: control by the retinohypothalamic tract and the suprachiasmatic nucleus. Brain Res 174: 245–262

    Article  PubMed  CAS  Google Scholar 

  • Kromer LF, Moore RY (1980) A study of the organization of the locus coeruleus projections to the lateral geniculate nuclei in the albino rat. Neuroscience 5: 255–271

    Article  PubMed  CAS  Google Scholar 

  • Lehman MN, Silver R, Gladstone WR, Kahn MR, Gibson M, Brittman EL (1987) Circadian rhythmicity restored by neural transplant. Immunocytochemical characterization of the graft and its integration with the host brain. J. Neurosc., 7: 1626–1638

    Google Scholar 

  • Levey AI, Hallanger AE, Wainer BH (1987) Choline acetyltransferase immunoreactivity in the rat thalamus. J Comp Neurol 257: 317–332

    Article  PubMed  CAS  Google Scholar 

  • Liou SY, Shibata S, Iwasaki K, Ueki S (1986) Optic nerve stimulation-induced release of 3H-glutamate and 3H-aspartate but not H-GABA from the suprachiasmatic nucleus in slices of rat hypothalamus. Brain Res Bull 16: 527–531

    Article  PubMed  CAS  Google Scholar 

  • Meijer JH, Albus H, Weidema F, Ravesloot JH (1993) The effects of glutamate on membrane potential and discharge rate of suprachiasmatic neurons. Brain Res 603: 284–288

    Article  PubMed  CAS  Google Scholar 

  • Mikkelsen JD, Larsen PJ (1993) Substance P in the suprachiasmatic nucleus of the rat: an immunohistochemical and in situ hybridization study. Histochemistry 100: 316

    Article  Google Scholar 

  • Mikkelsen JD, Vrang N (1994) A direct pretectosuprachiasmatic projection in the rat. Neuroscience 62: 497–505

    Article  PubMed  CAS  Google Scholar 

  • Mikkelsen JD, Larsen PJ, Ebling FJP (1993) Distribution of N-methyl-D-aspartate ( NMDA) receptor mRNAs in the rat suprachiasmatic nucleus. Brain Res 632: 329–333

    Google Scholar 

  • Moga MM, Moore RY (1996) Afferents to the suprachiasmatic nucleus shown by anterograde and retrograde tracing studies. J Comp Neurol (submitted)

    Google Scholar 

  • Moga MM, Weis RP, Moore RY (1995) Paraventricular thalamic nucleus projections in the rat. J Comp Neurol 359: 221–238

    Article  PubMed  CAS  Google Scholar 

  • Moore RY, Lenn NJ (1972) A retinohypothalamic projection in the rat. J Comp Neurol 146: 1–14

    Article  PubMed  CAS  Google Scholar 

  • Moore RY (1973) Retinohypothalamic projection in mammals: A comparative study. Brain Res 51: 403–409

    Article  Google Scholar 

  • Moore RY (1983) Organization and function of a central nervous system circadian oscillator: the suprachiasmatic hypothalamic nucleus. Fed Proc 42: 2783–2789

    PubMed  CAS  Google Scholar 

  • Moore RY (1989) The geniculohypothalamic tract in monkey and man. Brain Res 486: 190–194

    Article  PubMed  CAS  Google Scholar 

  • Moore RY (1992) The organization of the human circadian timing system. Prog Brain Res 93: 101–117

    Article  Google Scholar 

  • Moore RY, Card JP (1994) The intergeniculate leaflet: an anatomically and functionally distinct subdivision of the lateral geniculate complex. J Comp Neurol 344: 403–430

    Article  PubMed  CAS  Google Scholar 

  • Moore RY, Eichler VB (1972) Loss of circadian adrenal corticosterone rhythm following suprachiasmatic nucleus lesions in the rat. Brain Res 42: 201–206

    Article  PubMed  CAS  Google Scholar 

  • Moore RY, Klein DC (1974) Visual pathways and the central neural control of a circadian rhythm in pineal serotonin N-acetyltransferase activity. Brain Res 71: 17–33

    Article  PubMed  CAS  Google Scholar 

  • Moore RY, Speh JC (1993) GABA is the principal neurotransmitter of the circadian system. Neurosci Lett 150: 112–116

    Article  PubMed  CAS  Google Scholar 

  • Moore RY, Speh JC (1994) A putative retinohypothalamic projection containing substance P in the human. Brain Res 659: 249–253

    Article  PubMed  CAS  Google Scholar 

  • Moore RY, Halaris AE, Jones BE (1978) Serotonin neurons of the midbrain raphe: ascending projections. J Comp Neurol 180: 417–438

    Article  PubMed  CAS  Google Scholar 

  • Moore RY, Speh JC, Card JP (1995) The retinohypothalamic tract originates from a distinct subset of retinal ganglion cells. J Comp Neurol 352: 351–366

    Article  PubMed  CAS  Google Scholar 

  • Okamura H, Berod A, Julien J et al (1989) Demonstration of GABAergic cell bodies in the suprachiasmatic nucleus: in situ hybridization of glutamic acid decarboxylase and immunocytochemistry of GAD and GABA. Neurosci Lett 102: 131–136

    Article  PubMed  CAS  Google Scholar 

  • Pickard GE (1985) Bifurcating axons of retinal ganglion cells terminate in the hypothalamic suprachiasmatic nucleus and the intergeniculate leaflet of the thalamus. Neurosci Lett 55: 211–217

    Article  PubMed  CAS  Google Scholar 

  • Rea MA, Glass JD, Colwell CS (1994) Serotonin modulates photic responses in the hamster suprachiasmatic nuclei. J Neurosci 14: 3635–3642

    PubMed  CAS  Google Scholar 

  • Reppert SM, Schwartz WJ, Uhl GR (1987) Arginine vasopressin: a novel peptide rhythm in cerebrospinal fluid. TINS 10: 76–80

    CAS  Google Scholar 

  • Shibata S, Moore RY (1993) Neuropeptide Y and optic chiasm stimulation affect suprachiasmatic nucleus circadian function in vitro. Brain Res 615: 95–100

    Article  PubMed  CAS  Google Scholar 

  • Shibata S, Tsuneyoshi A, Hamada T, Tominaga K, Watanabe S (1992) Effect of substance P on circadian rhythms of firing activity and the 2-deoxyglucose uptake in the rat suprachiasmatic nucleus in vitro. Brain Res 597: 257–263

    Article  PubMed  CAS  Google Scholar 

  • Shirakawa T, Moore RY (1994a) Responses of rat suprachiasmatic nucleus neurons to substance P and glutamate in vitro. Brain Res 642: 213–220

    Article  PubMed  CAS  Google Scholar 

  • Shirakawa T, Moore RY (1994b) Glutamate shifts the phase of the circadian neuronal timing rhythm in the rat suprachiasmatic nucleus in vitro. Neurosci Lett 178: 47–50

    Article  PubMed  CAS  Google Scholar 

  • Silver R, LeSauter J (1993) Efferent signals of the suprachiasmatic nucleus. J Biol Rhythms 8: S89–92

    PubMed  Google Scholar 

  • Sofroniew MV, Isacson O, O’Brien TS (1989) Nerve growth factor receptor in the rat suprachiasmatic nucleus. Brain Res 476: 358–362

    Article  PubMed  CAS  Google Scholar 

  • Steinbusch HWM (1981) Distribution of serotonin immunoreactivity in the central nervous system of the rat-cell bodies and terminals. Neuroscience 6: 557–618

    Article  PubMed  CAS  Google Scholar 

  • Takatsuji K, Tohyama M (1989) The organization of the rat lateral geniculate body by immunohistochemical analysis of neuroactive substances. Brain Res 480: 198–209

    Article  PubMed  CAS  Google Scholar 

  • Takatsuji K, Miguel-Hidalgo J-J, Tohyama M (1991) Substance P-immunoreactive innervation from the retina to the suprachiasmatic nucleus in the rat. Brain Res 568: 223–229

    Article  PubMed  CAS  Google Scholar 

  • Van den Pol AN (1980) The hypothalamic suprachiasmatic nucleus of the rat: intrinsic anatomy. J Comp Neurol 191: 661–702

    Article  PubMed  Google Scholar 

  • Van den Pol A (1991) The suprachiasmatic nucleus: morphological and cytochemical substrates for cellular interaction. In: Klein DC, Moore RY, Reppert SM (eds) The suprachiasmatic nucleus: the mind’s clock. Oxford University Press, New York, pp 17–50

    Google Scholar 

  • Van den Pol AN, Tsujimoto KL (1985) Neurotransmitters of the hypothalamic suprachiasmatic nucleus: immunocytochemical analysis of 25 neuronal antigens. Neuroscience 15: 1049–1086

    Article  PubMed  Google Scholar 

  • Van den Pol A, Decavel C, Levi A, Paterson B (1989) Hypothalamic expression of a novel gene product, VGF: immunocytochemical analysis. J Neurosci 9: 4122–4137

    PubMed  Google Scholar 

  • Watts AG (1991) The efferent projections of the suprachiasmatic nucleus: anatomical insights into the control of circadian rhythms. In: Klein DC, Moore RY, Reppert SM (eds) The suprachiasmatic nucleus — the mind’s clock. Oxford University Press, New York, pp 77–106

    Google Scholar 

  • Watts AG, Swanson LW (1987) Efferent projection of the suprachiasmatic nucleus II. Studies using retrograde transport of fluorescent dyes and simultaneous peptide immunohistochemistry in the rat. J Comp Neurol 258: 230–252

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Moore, R.Y. (1997). Chemical Neuroanatomy of the Mammalian Circadian System. In: Redfern, P.H., Lemmer, B. (eds) Physiology and Pharmacology of Biological Rhythms. Handbook of Experimental Pharmacology, vol 125. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09355-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09355-9_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08265-8

  • Online ISBN: 978-3-662-09355-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics