Skip to main content

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 125))

Abstract

Historically the search for circadian pacemakers has most often focused on the visual pathways, the rationale being that to perform useful work for the organism, pacemakers must be synchronized to local time and thus, perforce, the biological clock should be intimately associated with the visual pathways. In some instances this strategy has resulted in identifying pacemaker structures outside but in close contact with the retina such as the suprachiasmatic nucleus of the rodent (Moore and Eichler 1972; Stephan and Zucker 1972) or the optic lobes of the cockroach (Sokolove 1975). In a few instances the search for pacemaker structures has stopped almost immediately as it became clear that the retina contained a biological clock.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aronson BD, Johnson KA, Dunlap JC (1994a) The circadian clock locus frequency: a single ORF defines period length and temperature compensation. Proc Natl Acad Sci USA 91: 7683–7687

    Article  PubMed  CAS  Google Scholar 

  • Aronson BD, Johnson KA, Loros JJ, Dunlap JC (1994b) Negative feedback defining a circadian clock: autoregulation in the clock gene frequency. Science 263: 1578–1584

    Article  PubMed  CAS  Google Scholar 

  • Besharse JC, Iuvone PM (1983) Circadian clock in Xenopus eye controlling retinal serotonin N-acetyltransferase. Nature 305: 133–135

    Article  PubMed  CAS  Google Scholar 

  • Besharse JC, Iuvone PM, Pierce ME (1988) Regulation of rhythmic photoreceptor metabolism: a role for post-receptoral neurons. Prog Retinal Res 7: 21–61

    Article  CAS  Google Scholar 

  • Binkley S, Hryshchyshyn M, Reilly K (1979) N-Acetyltransferase activity responds to environmental lighting in the eye as well as in the pineal gland. Nature 281: 479–481

    Article  PubMed  CAS  Google Scholar 

  • Block GD (1981) In vivo recording from the Aplysia eye. Brain Res 222: 138–143

    Article  PubMed  CAS  Google Scholar 

  • Block GD, McMahon D (1983) Localized illumination of retinal layers in the Aplysia and Bulla eye reveal new relationships between retinal cell types. Brain Res 265: 134–137

    Article  PubMed  CAS  Google Scholar 

  • Block GD, McMahon D (1984) Cellular analysis of the Bulla ocular circadian pacemaker system: III. Localization of the circadian pacemaker. J Comp Physiol A 155: 387–395

    Google Scholar 

  • Block GD, Wallace S (1982) Localization of a circadian pacemaker in the eye of a mollusc, Bulla. Science 217: 155–157

    Google Scholar 

  • Block GD, McMahon D, Wallace S, Friesen W (1984) Cellular analysis of the Bulla ocular circadian pacemaker system: I. A model for retinal organization. J Comp Physiol [A] 155: 365–378

    Google Scholar 

  • Block GD, Khalsa S, McMahon D, Michel S, Geusz M (1993) Biological clocks in the retina: cellular mechanisms of biological timekeeping. Int Rev Cytol 146: 83143

    Google Scholar 

  • Cahill GM, Besharse JC (1989) A D-2 dopamine receptor agonist resets the phase of a circadian clock in cultured eyecups from Xenopus laevis. Soc Neurosci Abstr 15: 24

    Google Scholar 

  • Cahill GM, Besharse JC (1990) Circadian regulation of melatonin in the retina of Xenopus laevis: limitation of serotonin availability. J Neurochem 54: 716–719

    Article  PubMed  CAS  Google Scholar 

  • Cahill GM, Besharse JC (1991) Resetting the circadian clock in cultured Xenopus eyecups: regulation of retinal melatonin rhythms by light and D2 dopamine receptors. J Neurosci 11: 2959–2971

    PubMed  CAS  Google Scholar 

  • Cahill GM, Besharse JC (1993) Circadian clock functions localized in Xenopus retinal photoreceptors. Neuron 10: 573–577

    Article  PubMed  CAS  Google Scholar 

  • Cahill GM, Grace MS, Besharse JC (1991) Rhythmic regulation of retinal melatonin: metabolic pathways, neurochemical mechanisms, and the ocular circadian clock. Cell Mol Neurobiol 11: 529–560

    Article  PubMed  CAS  Google Scholar 

  • Colwell CS (1990) Light and serotonin interact in affecting the circadian system in Aplysia. J Comp Physiol [A] 167: 841–845

    CAS  Google Scholar 

  • Colwell CS, Khalsa S, Block G (1992a) Cellular basis of entrainment. Chronobiol Int 9: 163–179

    Article  PubMed  CAS  Google Scholar 

  • Colwell CS, Michel S, Block G (1992b) Evidence that potassium channels mediate the effect: of serotonin on the ocular circadian pacemaker of Aplysia. J Comp Physiol [A] 171: 651–656

    CAS  Google Scholar 

  • Colwell CS, Michel S, Block GD (1994) Calcium plays a central role in phase shifting the ocular pacemaker in Aplysia. J Comp Physiol [A] 175: 415–423

    CAS  Google Scholar 

  • Corrent G, Eskin A, Kay I (1982) Entrainment of the circadian rhythm from the eye of Aplysia: role of serotonin. Am J Physiol 242: R326 - R332

    PubMed  CAS  Google Scholar 

  • Corrent G, McAdoo DJ, Eskin A (1978) Serotonin shifts the phase of the circadian rhythm from the Aplysia eye. Science 202: 977–979

    Article  PubMed  CAS  Google Scholar 

  • Edery J, Ruitila JE, Rosbash M (1994) Phase shifting of the circadian clock by induction of the Drosophila period protein. Science 263: 237–240

    Article  PubMed  CAS  Google Scholar 

  • Eskin A (1971) Properties of the Aplysia visual system: In vitro entrainment of the circadian rhythm and centrifugal regulation of the eye. Z Vgl Physiol 74: 353–371

    Article  Google Scholar 

  • Eskin A (1972) Phase shifting a circadian rhythm in the eye of Aplysia by high potassium pulses. J Comp Physiol [A] 80: 353–376

    Article  Google Scholar 

  • Eskin A (1977) Neurophysiological mechanisms involved in photo-entrainment of the circadian rhythm from the Aplysia eye. J Neurobiol 8: 273–299

    Article  PubMed  CAS  Google Scholar 

  • Eskin A (1979) Circadian system of the Aplysia eye: properties of the pacemaker and mechanisms of its entrainment. Fed Proc 38: 2573–2579

    PubMed  CAS  Google Scholar 

  • Eskin A (1982) Increasing external K+ blocks phase shifts in a circadian rhythm produced by serotonin or 8-benzylthio-cAMP. J Neurobiol 13: 241–249

    Article  PubMed  CAS  Google Scholar 

  • Eskin A, Takahashi JS (1983) Adenylate cyclase activation shifts the phase of a circadian pacemaker. Science 220: 82–84

    Article  PubMed  CAS  Google Scholar 

  • Eskin A, Corrent G, Lin C-Y, McAdoo DJ (1982) Mechanism of shifting the phase of a circadian oscillator by serotonin: involvement of cAMP. Proc Natl Acad Sci USA 79: 660–664

    Article  PubMed  CAS  Google Scholar 

  • Eskin A, Takahashi JS, Zatz M, Block GD (1984) Cyclic guanosine 3’: 5’-monophosphate mimics the effects of light on a circadian pacemaker in the eye of Aplysia. J Neurosci 10: 2466–2471

    Google Scholar 

  • Eskin A, Yeung SJ, Klass MR (1984) Requirement for protein synthesis in the regulation of a circadian oscillator by serotonin. Proc Natl Acad Sci USA 1: 76377641

    Google Scholar 

  • Geusz ME, Block G (1992) The retinal cells generating the circadian small impulses in the Bulla optic nerve. J Biol Rhythms 7: 255–268

    Article  PubMed  CAS  Google Scholar 

  • Geusz ME, Block G (1992) Measurements of electrical coupling between circadian pacemaker cells of the Bulla eye. Neurosci Abstr 18: 1

    Google Scholar 

  • Geusz ME, Page T (1991) An opsin-based photopigment mediates phase shifts of the Bulla circadian pacemaker. J Comp Physiol [A] 168: 565–570

    Article  CAS  Google Scholar 

  • Geusz ME, Michel S, Block G (1994) Intracellular calcium responses of circadian pacemaker neurons measured with fura-2. Brain Res 638: 109–116

    Article  PubMed  CAS  Google Scholar 

  • Green CB, Besharse J (1994) Tryptophan hydroxylase expression is regulated by a circadian clock in Xenopus laevis. J Neurochem 62: 2420–2428

    Article  PubMed  CAS  Google Scholar 

  • Hamm HE, Menaker M (1980) Retinal rhythms in chicks: circadian variation in melatonin and serotonin N-acetylferase activity. Proc Natl Acad Sci USA 77: 4998–5002

    Article  PubMed  CAS  Google Scholar 

  • Hardin PE, Hall JC, Rosbash M (1990) Feedback of the Drosophila period gene product on circadian cycling of its messenger RNA levels. Nature 343: 536–540

    Article  PubMed  CAS  Google Scholar 

  • Herman K, Strumwasser F (1984) Regional specializations in the eye of Aplysia, a neuronal circadian oscillator. J Comp Neurol 230: 593–613

    Article  PubMed  CAS  Google Scholar 

  • Iuvone PM (1986) Rhythms of melatonin biosynthesis in retina: Involvement of calcium, cyclic AMP accumulation and serotonin N-acetyltransferase activity. Life Sci 38: 331–342

    Article  PubMed  CAS  Google Scholar 

  • Iuvone PM, Besharse JC (1983) Regulation of indoleamine N-acetyltransferase activity in the retina: effects of light and dark, protein synthesis inhibitors and cyclic nucleotide analogues. Brain Res 273: 111–119

    Article  PubMed  CAS  Google Scholar 

  • Iuvone PM, Besharse JC (1986) Cyclic AMP stimulates serotonin N-acetyltransferase activity in Xenopus retina in vitro. J Neurochem 46: 33–39

    Article  PubMed  CAS  Google Scholar 

  • Iuvone PM, Besharse JC (1886) Involvement of calcium in the regulation of serotonin N-acetyltransferase in retina. J Neurochem 46: 82–88

    Article  Google Scholar 

  • Jacket JW (1969) Circadian rhythm of optic nerve impulses recorded in darkness from isolated eye of Aplysia. Science 164: 562–563

    Article  Google Scholar 

  • Jacklet JW (1969) Electrophysiological organization of the eye of Aplysia. J Gen Physiol 53: 21–42

    Article  PubMed  CAS  Google Scholar 

  • Jacklet JW (1974) The effects of constant light and light pulses on the circadian rhythm in the eye of Aplysia. J Comp Physiol [A] 90: 33–45

    Article  Google Scholar 

  • Jacklet JW (1980) Protein synthesis requirement of the Aplysia circadian clock, tested by active and inactive derivatives of the inhibitor anisomycin. J Exp Biol 85: 33–42

    PubMed  CAS  Google Scholar 

  • Jacklet JW (1989) Circadian neuronal oscillators. In: Jacklet JW (ed) Neuronal and cellular oscillators. Decker, New York, pp 483–527

    Google Scholar 

  • Jacklet JW (1991) Photoresponsiveness of Aplysia eye is modulated by the ocular pacemaker and serotonin. Biol Bull 180: 284–294

    Article  Google Scholar 

  • Jacklet JW, Barnes S (1995) Circadian phase differences in a retinal pacemaker neuron delayed rectifier K+ current and increased current induced by a phase-shifting neurotransmitter, serotonin. Physiologist 38:A-22

    Google Scholar 

  • Jacklet JW, Colquhoun W (1983) Ultrastructure of photoreceptors and circadian pacemaker neurons in the eye of a gastropod, Bulla. J Neurocytol 12: 673–696

    Google Scholar 

  • Jacklet JW, Geronimo J (1971) Circadian rhythm: population of interacting neurons. Science 174: 299–302

    Article  PubMed  CAS  Google Scholar 

  • Jacklet JW, Lotshaw DP (1981) Light and high potassium cause similar phase shifts of the Aplysia eye circadian rhythm. J Exp Biol 94: 345–349

    Google Scholar 

  • Jacklet JW, Alvarez R, Bernstein B (1972) Ultrastructure of the eye of Aplysia. J Ultrastruct Res 38: 246–261

    Article  PubMed  CAS  Google Scholar 

  • Jacklet JW, Schuster L, Rolerson C (1982) Electrical activity and structure of retinal cells of the Aplysia eye. I. Secondary neurons. J Exp Biol 99: 369–380

    Google Scholar 

  • Khalsa SBS, Block G (1988a) Calcium channels mediate phase shifts of the Bulla circadian pacemaker. J Comp Physiol [A] 164: 195–206

    Article  CAS  Google Scholar 

  • Khalsa SBS, Block G (1988b) Phase shifts of Bulla pacemaker are not blocked by calmodulin antagonists. Life Sci 43: 1151–1156

    Article  Google Scholar 

  • Khalsa SBS, Ralph M, Block G (1990) Chloride conductance contributes to period determination of a neuronal circadian pacemaker. Brain Res 520: 166–169

    Article  PubMed  CAS  Google Scholar 

  • Khalsa SBS, Whitmore D, Block G (1992) Stopping the biological clock with inhibitors of protein synthesis. Proc Natl Acad Sci USA 89: 10862–10866

    Article  PubMed  CAS  Google Scholar 

  • Khalsa SBS, Ralph M, Block G (1993a) The role of extracellular calcium in generating and in phase-shifting the Bulla ocular circadian rhythm. J Biol Rhythm 8: 125–139

    Article  CAS  Google Scholar 

  • Khalsa SBS, Whitmore D, Bogart B, Block G (1993b) Evidence for the direct involvement of transcription in the timing mechanism of the circadian pacemaker. Soc Neurosci Abstr 19: 1703

    Google Scholar 

  • Koumenis C, Eskin A (1992) The hunt for mechanisms of circadian timing in the eye of Aplysia. Chronobiol Int 9: 201–221

    Article  PubMed  CAS  Google Scholar 

  • Lotshaw D, Jacklet JW (1986) Involvement of protein synthesis in the circadian clock of the Aplysia eye. Am J Physiol 250: R5 - R17

    PubMed  CAS  Google Scholar 

  • Luborsky-Moore J, Jacklet JW (1977) Ultrastructure of the secondary cells in the Aplysia eye. J Ultrastruct Res 60 (2): 235–245

    Article  PubMed  CAS  Google Scholar 

  • McMahon DG, Block G (1987a) The Bulla circadian pacemaker: I. Pacemaker neuron membrane potential controls phase through a calcium-dependent mechanism. J Comp Physiol [A] 161: 335–346

    Google Scholar 

  • McMahon DG, Block G (1987b) The Bulla circadian pacemaker: II. Chronic changes in membrane potential lengthen free running period. J Comp Physiol [A] 161: 347354

    Google Scholar 

  • McMahon DG, Wallace S, Block G (1984) Cellular analysis of the Bulla ocular circadian pacemaker system: II. Neurophysiological basis of circadian rhythmicity. J Comp Physiol [A] 155: 379–385

    Google Scholar 

  • Michel S, Khalsa S, Block G (1992) Phase shifting the circadian rhythm in the eye of Bulla by inhibition of chloride conductance. Neurosci Lett 146: 219–222

    Article  PubMed  CAS  Google Scholar 

  • Michel S, Geusz M, Zaritsky J, Block G (1993a) Circadian rhythm in membrane conductance expressed in dissociated molluscan neurons. Science 259: 239–241

    Article  PubMed  CAS  Google Scholar 

  • Michel S, Manivanna K, Zaritsky J, Block G (1993b) Whole cell currents in cultured circadian pacemaker neurons of Bulla. Soc Neurosci Abstr 19: 1616

    Google Scholar 

  • Michel S, Geusz M, Block G (1994) Calcium current in circadian pacemaker neurons of the marine snail Bulla. Eur J Neurosci 7 [Suppl]: 145

    Google Scholar 

  • Moore RY, Eichler VB (1972) Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res 42: 210–216

    Article  Google Scholar 

  • Raju U, Yeung SJ, Eskin A (1990) Involvement of proteins in light resetting ocular circadian oscillators in Aplysia. Am J Physiol 258: R256 - R262

    PubMed  CAS  Google Scholar 

  • Raju U, Koumenis C, Nunez-Regueiro M, Eskin A (1991) Alteration of the phase and period of a circadian oscillator by a reversible transcription inhibitor. Science 253: 673–675

    Article  PubMed  CAS  Google Scholar 

  • Raju U, Nunez-Regueiro M, Cook R, Kaetzel M, Yeung S, Eskin A (1993) Identification of an annexin-like protein and its possible role in the Aplysia eye circadian system. J Neurochem 61: 1236–1245

    Article  PubMed  CAS  Google Scholar 

  • Ralph MR, Block G (1990) Circadian and light-induced conductance changes in putative pacemaker cells of Bulla gouldiana. J Comp Physiol [A] 166: 589–595

    CAS  Google Scholar 

  • Sokolove PG (1975) Localization of the cockroach optic lobe circadian pacemaker with microlesions. Brain Res 87: 13–21

    Article  PubMed  CAS  Google Scholar 

  • Stephan FK, Zucker I (1972) Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc Natl Acad Sci USA 69: 1583–1586

    Article  PubMed  CAS  Google Scholar 

  • Strumwasser F (1973) Neural and humoral factors in the temporal organization of behavior. Physiologist 16: 9–42

    PubMed  CAS  Google Scholar 

  • Tosini G, Menaker M (1996) Circadian rhythms in cultured mammalian retina. Science 272: 419–421

    Article  PubMed  CAS  Google Scholar 

  • Underwood H, Sciopes T (1985) Melatonin rhythms in quail: regulation by photoperiod and circadian pacemakers. J Pineal Res 2: 133–143

    Article  PubMed  CAS  Google Scholar 

  • Underwood H, Siopes T, Barrett RK (1988) Does a biological clock reside in the eye of the quail? J Biol Rhythms 3: 323–331

    Article  PubMed  CAS  Google Scholar 

  • Woolum JC, Strumwasser F (1980) The differential effects of ionizing radiation on the circadian oscillator and other functions in the eye of Aplysia. Proc Natl Acad Sci USA 77: 5542–5546

    Article  PubMed  CAS  Google Scholar 

  • Yeung SJ, Eskin A (1987) Involvement of a specific protein in the regulation of a circadian rhythm in the Aplysia eye. Proc Natl Acad Sci USA 84: 279–283

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Block, G.D., Michel, S. (1997). Rhythms in Retinal Mechanisms. In: Redfern, P.H., Lemmer, B. (eds) Physiology and Pharmacology of Biological Rhythms. Handbook of Experimental Pharmacology, vol 125. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09355-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09355-9_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08265-8

  • Online ISBN: 978-3-662-09355-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics