Skip to main content

Problems in Interpreting the Effects of Drugs on Circadian Rhythms

  • Chapter
Physiology and Pharmacology of Biological Rhythms

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 125))

Abstract

The aim of this chapter is to provide a guide to some of the questions that might be raised when a drug is found to have effects on the temporal profile of variables. It discusses possible explanations, especially those involving the newly discovered major influence that behaviour can have on rhythms. Some people, of course, will be more concerned with learning whether or not a drug produces a desired temporal effect; discussion about whether the effect represents masking or entrainment, or whether an agent is a true zeitgeber or not, may seem academic. It is no more so than knowing whether an agent is an agonist or a partial agonist. In the long run medicine can be improved if the complexities of the circadian system are taken into account, and if the mode and site of the actions of chronobiotic drugs are understood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albers HE, Ferris CF (1984) Neuropeptide Y: role in light-dark cycle entrainment of hamster circadian rhythms. Neurosci Lett 50: 163–168

    Article  PubMed  CAS  Google Scholar 

  • Aschoff J (1960) Exogenous and endogenous components in circadian rhythms. Cold Spring Harbor Symp Quant Biol 25: 11–28

    Article  PubMed  CAS  Google Scholar 

  • Aschoff J (1965) Response curves in circadian periodicity. In: Aschoff J (ed) Circadian clocks. North-Holland, Amsterdam, pp 95–111

    Google Scholar 

  • Aschoff J, Figala J, Pöppel E (1973) Circadian rhythms of locomotor activity in the golden hamster (Mesocricetus auratus) measured with two different techniques. J Comp Physiol Psychol 85: 20–28

    Article  PubMed  CAS  Google Scholar 

  • Biello SM, Mrosovsky N (1993) Circadian phase-shifts induced by chlordiazepoxide without increased locomotor activity. Brain Res 622: 58–62

    Article  PubMed  CAS  Google Scholar 

  • Biello SM, Janik D, Mrosovsky N (1994) Neuropeptide Y and behaviorally induced phase shifts. Neuroscience 62: 273–279

    Article  PubMed  CAS  Google Scholar 

  • Block GD, Khalsa SBS, McMahon DG, Michel S, Guesz M (1993) Biological clocks in the retina: cellular mechanisms of biological timekeeping. Int Rev Cytol 146: 83–144

    Article  PubMed  CAS  Google Scholar 

  • Bobrzynska KJ, Godfrey MH, Mrosovsky N (1996) Serotonergic stimulation and nonphotic phase-shifting in hamsters. Physiol Behav 59: 221–230

    Article  PubMed  CAS  Google Scholar 

  • Boulos Z, Houpt TA (1994) Failure of triazolam to alter circadian reentrainment rates in squirrel monkeys. Pharmacol Biochem Behav 47: 471–476

    Article  PubMed  CAS  Google Scholar 

  • Cahill GM, Menaker M (1989) Effects of excitatory amino acid receptor antagonists and agonists on suprachiasmatic nucleus responses to retinohypothalamic tract volleys. Brain Res 479: 76–82

    Article  PubMed  CAS  Google Scholar 

  • Cassone VM, Chesworth MJ, Armstrong SM (1986) Dose-dependent entrainment of rat circadian rhythms by daily injection of melatonin. J Biol Rhythms 1: 219–229

    Article  PubMed  CAS  Google Scholar 

  • Colwell CS, Ralph MR, Menaker M (1990) Do NMDA receptors mediate the effects of light on circadian behavior? Brain Res 523: 117–120

    Article  PubMed  CAS  Google Scholar 

  • Daan S, Damassa D, Pittendrigh CS, Smith ER (1975) An effect of castration and testosterone replacement on a circadian pacemaker in mice (Mus musculus). Proc Natl Acad Sci USA 72: 3744–3747

    Article  PubMed  CAS  Google Scholar 

  • Danysz W, Essmann U, Bresink I, Wilke R (1994) Glutamate antagonists have different effects on spontaneous locomotor activity in rats. Pharmacol Biochem Behav 48: 111–118

    Article  PubMed  CAS  Google Scholar 

  • de Elvira Ruiz MC, Persaud R, Coen CW (1992) Use of running wheels regulates the effects of the ovaries on circadian rhythms. Physiol Behav 52: 277–284

    Article  Google Scholar 

  • De Vries MJ, Meijer JH (1991) Aspartate injections into the suprachiasmatic region of the Syrian hamster do not mimic the effects of light on the circadian activity rhythm. Neurosci Lett 127: 215–218

    Article  PubMed  Google Scholar 

  • Duncan WC Jr, Schull J (1994) The interaction of thyroid state, MAOI drug treatment, and light on the level and circadian pattern of wheel-running in rats. Biol Psychiatry 35: 324–334

    Google Scholar 

  • Earnest DJ, Turek FW (1985) Neurochemical basis for the photic control of circadian rhythms and seasonal reproductive cycles: role for acetylcholine. Proc Natl Acad Sci USA 82: 4277–4281

    Article  PubMed  CAS  Google Scholar 

  • Edgar DM. Martin CE, Dement WC (1991) Activity feedback to the mammalian circadian pacemaker: influence on observed measures of rhythm period length. J Biol Rhythms 6: 185–199

    Article  PubMed  Google Scholar 

  • Edgar DM, Miller JD, Prosser RA, Dean RR, Dement WC (1993) Serotonin and the mammalian circadian system: II. Phase-shifting rat behavioral rhythms with serotonergic agonists. J Biol Rhythms 8: 17–31

    Google Scholar 

  • Foster RG (1993) Photoreceptors and circadian systems. Curr Direct Psychol Sci 2: 34–39

    Article  Google Scholar 

  • Golombek DA, Cardinali DP (1993) Melatonin accelerates reentrainment after phase advance of the light-dark cycle in Syrian hamsters: antagonism by flumazenil. Chronobiol Int 10: 435–441

    Article  PubMed  CAS  Google Scholar 

  • Hafen T, Wollnik F (1994) Effect of lithium carbonate on activity level and circadian period in different strains of rats. Pharmacol Biochem Behav 49: 975–983

    Article  PubMed  CAS  Google Scholar 

  • Hastings MH, Mead SM, Vindlacheruvu RR, Ebling FJP, Maywood ES, Grosse J (1992) Non-photic phase shifting of the circadian activity rhythm of Syrian hamsters: the relative potency of arousal and melatonin. Brain Res 591: 20–26

    Article  PubMed  CAS  Google Scholar 

  • Hau M, Gwinner E (1994) Melatonin facilitates synchronization of sparrow circadian rhythms to light. J Comp Physiol [A] 175: 343–347

    CAS  Google Scholar 

  • Janik D, Mrosovsky N (1993) Nonphotically induced phase shifts of circadian rhythms in the golden hamster activity-response curves at different ambient temperatures. Physiol Behav 53: 431–436

    Article  PubMed  CAS  Google Scholar 

  • Joy JE, Losee-Olson S, Turek FW (1989) Single injections of triazolam, a short-acting benzodiazepine, lengthen the period of the circadian activity rhythm in golden hamsters. Experientia 45: 152–154

    Article  PubMed  CAS  Google Scholar 

  • Klemfuss H (1992) Rhythms and the pharmacology of lithium. Pharmacol Ther 56: 53–78

    Article  PubMed  CAS  Google Scholar 

  • Mead S, Ebling FJP, Maywood ES, Humby T, Herbert J, Hastings MH (1992) A nonphotic stimulus causes instantaneous phase advances of the light-entrainable circadian oscillator of the Syrian hamster but does not induce the expression of cfos in the suprachiasmatic nuclei. J Neurosci 12: 2516–2522

    PubMed  CAS  Google Scholar 

  • Meijer JH, Rusak B, Gänshirt G (1992) The relation between light-induced discharge in the suprachiasmatic nucleus and phase shifts of hamster circadian rhythms. Brain Res 598: 257–263

    Article  PubMed  CAS  Google Scholar 

  • Mikkelsen JD, Vrang N (1994) A direct pretectosuprachiasmatic projection in the rat. Neuroscience 62: 497–505

    Article  PubMed  CAS  Google Scholar 

  • Mikkelsen JD, Vrang N, Larsen PJ (1994) Neuropeptides in the mammalian suprachiasmatic nucleus. Adv Pineal Res 8: 57–67

    CAS  Google Scholar 

  • Miller JD (1993) On the nature of the circadian clock in mammals. Am J Physiol 264: R821 - R832

    PubMed  CAS  Google Scholar 

  • Mistlberger RE, Houpt TA, Moore-Ede MC (1991) The benzodiazepine triazolam phase-shifts circadian activity rhythms in a diurnal primate, the squirrel monkey (Saimiri sciureus). Neurosci Lett 124: 27–30

    Article  PubMed  CAS  Google Scholar 

  • Moore RY, Card JP (1994) Intergeniculate leaflet: an anatomically and functionally distinct subdivision of the lateral geniculate complex. J Comp Neurol 344: 403–430

    Article  PubMed  CAS  Google Scholar 

  • Moore-Ede MC (1985) Discussion. Photoperiodism melatonin and the pineal. In: Evered D, Clark S (eds) Ciba Foundation symposium, vol 117. Pitman, London, p 203

    Google Scholar 

  • Morin LP (1994) The circadian visual system. Brain Res Rev 67: 102–127

    Article  Google Scholar 

  • Morin LP, Fitzgerald KM, Zucker I (1977) Estradiol shortens the period of hamster circadian rhythms. Science 196: 305–307

    Article  PubMed  CAS  Google Scholar 

  • Mrosovsky N (1988) Phase response curves for social entrainment. J Comp Physiol [A] 162: 35–46

    Article  CAS  Google Scholar 

  • Mrosovsky N (1991) Double pulse experiments with nonphotic and photic phase-shifting stimuli. J Biol Rhythms 6: 167–179

    Article  PubMed  CAS  Google Scholar 

  • Mrosovsky N (1993a) Changes after single nonphotic events. Chronobiol Int 10: 271–276

    Article  PubMed  CAS  Google Scholar 

  • Mrosovsky N (1993b) Photic phase shifting in hamsters: more than meets the eye. Light Treatment Biol Rhythms 5: 34–36

    Google Scholar 

  • Mrosovsky N (1995) A nonphotic gateway to the circadian clock of hamsters. Ciba Found Symp 183: 154–174

    PubMed  CAS  Google Scholar 

  • Mrosovsky N, Salmon PA (1987) A behavioural method for accelerating re-entrainment of rhythms to new light-dark cycles. Nature 330: 372–373

    Article  PubMed  CAS  Google Scholar 

  • Mrosovsky N, Salmon PA (1990) Triazolam and phase-shifting acceleration re-evaluated. Chronobiol Int 7: 35–41

    Article  PubMed  CAS  Google Scholar 

  • Mrosovsky N, Salmon PA, Menaker M, Ralph MR (1992) Nonphotic phase shifting in hamster clock mutants. J Biol Rhythms 7: 41–49

    Article  PubMed  CAS  Google Scholar 

  • Prosser RA, Heller HC, Miller JD (1992) Serotonergic phase shifts of the mammalian circadian clock: effects of tetrodotoxin and high Mgt+. Brain Res 573: 336–340

    Article  PubMed  CAS  Google Scholar 

  • Prosser RA, Dean RR, Edgar DM, Heller HC, Miller JD (1993) Serotonin and the mammalian circadian system: I. In vitro phase shifts by serotonergic agonists and antagonists. J Biol Rhythms 8: 1–16

    Article  PubMed  CAS  Google Scholar 

  • Ralph MR, Menaker M (1989) GABA regulation of circadian responses to light. I. Involvement of GABAA-benzodiazepine and GABAB-receptors. J Neurosci 9: 2858–2865

    PubMed  CAS  Google Scholar 

  • Ralph MR, Mrosovsky N (1992) Behavioral inhibition of circadian responses to light. J Biol Rhythms 7: 353–359

    Article  PubMed  CAS  Google Scholar 

  • Redfern P, Minors D, Waterhouse J (1994) Circadian rhythms, jet lag, and chronobiotics: an overview. Chronobiol Int 11: 253–265

    Article  PubMed  CAS  Google Scholar 

  • Redman J, Armstrong S, Ng KT (1983) Free-running activity rhythms in the rat: entrainment by melatonin. Science 219: 1089–1091

    Article  PubMed  CAS  Google Scholar 

  • Redman JR, Roberts CM (1991) Entrainment of rat activity rhythms by melatonin does not depend on wheel-running activity. Soc Neurosci Abstr 17: 673

    Google Scholar 

  • Reebs SG, Mrosovsky N (1989a) Effects of induced wheel running on the circadian activity rhythms of Syrian hamsters: entrainment and phase response curve. J Biol Rhythms 4: 39–48

    Article  PubMed  CAS  Google Scholar 

  • Reebs SG, Mrosovsky N (1989b) Large phase-shifts of circadian rhythms caused by induced running in a re-entrainment paradigm: the role of pulse duration and light. J Comp Physiol [A] 165: 819–825

    Article  CAS  Google Scholar 

  • Reebs SG, Lavery RJ, Mrosovsky N (1989) Running activity mediates the phase-advancing effects of dark pulses on hamster circadian rhythms. J Comp Physiol [A] 165: 811–818

    Article  CAS  Google Scholar 

  • Refinetti R, Kaufman CM, Menaker M (1994) Complete suprachiasmatic lesions eliminate circadian rhythmicity of body temperature and locomotor activity in golden hamsters. J Comp Physiol [A] 175: 223–232

    Article  CAS  Google Scholar 

  • Rusak B, Bina KG (1990) Neurotransmitters in the mammalian circadian system. Annu Rev Neurosci 13: 387–401

    Article  PubMed  CAS  Google Scholar 

  • Schreiber G, Avissar S (1991) Lithium administered by eye drops: a better treatment for bipolar affective disorder? Prog Neuropsychopharmacol Biol Psychiatry 15: 315

    Article  PubMed  CAS  Google Scholar 

  • Seggie J (1988) Lithium and the retina. Prog Neuropsychopharmacol Biol Psychiatry 12: 241–253

    Article  PubMed  CAS  Google Scholar 

  • Shibata S, Tsuneyoshi A, Hamada T, Tominaga K, Watanabe S (1992) Phase-resetting effect of 8-OH-DPAT, a serotoninlA receptor agonist, on the circadian rhythm of firing rate in the rat suprachiasmatic nuclei in vitro. Brain Res 582: 353–356

    Article  PubMed  CAS  Google Scholar 

  • Smith RD, Inouye S-IT, Turek FW (1989) Central administration of muscimol phase-shifts the mammalian circadian clock. J Comp Physiol [A] 164: 805–814

    Article  CAS  Google Scholar 

  • Sumova A, Ebling FJP, Maywood ES, Herbert J, Hastings MH (1994) Non-photic circadian entrainment in the Syrian hamster is not associated with phosphorylation of the transcriptional regulator CREB within the suprachiasmatic nucleus, but is associated with adrenocortical activation. Neuroendocrinology 59: 579–589

    Article  PubMed  CAS  Google Scholar 

  • Takahashi JS, DeCoursey PJ, Bauman L, Menaker M (1984) Spectral sensitivity of a novel photoreceptive system mediating entrainment of mammalian circadian rhythms. Nature 308: 186–188

    Article  PubMed  CAS  Google Scholar 

  • Tominaga K, Shibata S, Ueki S, Watanabe S (1992) Effects of 5-HT1A receptor agonists on the circadian rhythm of wheel-running activity in hamsters. Eur J Pharmacol 214: 79–84

    Article  PubMed  CAS  Google Scholar 

  • Tricklebank MD, Singh L, Oles RJ, Preston C, Iversen SD (1989) The behavioural effects of MK-801: a comparison with antagonists acting non-competitively and competitively at the NMDA receptor. Eur J Pharmacol 167: 127–135

    Article  PubMed  CAS  Google Scholar 

  • Tsujimaru S, Ida Y, Satoh H, Egami H, Shirao I, Mukasa H, Nakazawa Y (1992) Vitamin B12 accelerates re-entrainment of activity rhythms in rats. Life Sci 50: 1843–1850

    Article  PubMed  CAS  Google Scholar 

  • Turek FW (1988) Do circadian biologists and chronopharmacologists talk the same ‘language’? Annu Rev Chronopharmacol 4: 205–208

    CAS  Google Scholar 

  • Turek FW, Losee-Olson S (1986) A benzodiazepine used in the treatment of insomnia phase-shifts the mammalian circadian clock. Nature 321: 167–168

    Article  PubMed  CAS  Google Scholar 

  • van den Pol AN (1986) Gamma-aminobutyrate, gastrin releasing peptide, serotonin, somatostatin, and vasopressin: ultrastructural immunocytochemical localization in presynaptic axons in the suprachiasmatic nucleus. Neuroscience 17: 643–659

    Article  PubMed  Google Scholar 

  • van Reeth O, Turek FW (1989) Stimulated activity mediates phase shifts in the hamster circadian clock induced by dark pulses or benzodiazepines. Nature 339: 49–51

    Article  PubMed  CAS  Google Scholar 

  • van Reeth O, Losee-Olson S, Turek FW (1987) Phase shifts in the circadian activity rhythm induced by triazolam are not mediated by the eyes or the pineal gland in the hamster. Neurosci Lett 80: 185–190

    Article  PubMed  Google Scholar 

  • van Reeth O, Hinch D, Tecco JM, Turek FW (1991) The effects of short periods of immobilization on the hamster circadian clock. Brain Res 545: 208–214

    Article  PubMed  Google Scholar 

  • Winfree AT (1986) Benzodiazepines set the clock. Nature 321: 114–115

    Article  PubMed  CAS  Google Scholar 

  • Yamada N, Shimoda K, Takahashi K, Takahashi S (1990) Relationship between free- running period and motor activity in blinded rats. Brain Res Bull 25: 115–119

    Article  PubMed  CAS  Google Scholar 

  • Zatz M, Herkenham MA (1981) Intraventricular carbachol mimics the phase-shifting effect of light on the circadian rhythm of wheel-running activity. Brain Res 212: 234–238

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mrosovsky, N. (1997). Problems in Interpreting the Effects of Drugs on Circadian Rhythms. In: Redfern, P.H., Lemmer, B. (eds) Physiology and Pharmacology of Biological Rhythms. Handbook of Experimental Pharmacology, vol 125. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09355-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09355-9_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08265-8

  • Online ISBN: 978-3-662-09355-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics