Skip to main content

Two-Equivalent Couplers

  • Chapter
Organic Chemistry of Photography
  • 301 Accesses

Abstract

A coupler which has no substituent at the active position is usually called a four-equivalent coupler, because totally four moles (equivalents) of silver halide are necessary to generate one mole of an azomethine dye. On the other hand, a coupler whose active position is substituted with an electro-negative atom such as chlorine, oxygen, or sulfur is called a two-equivalent coupler, because it theoretically requires two moles of silver halide to produce one mole of the corresponding dye. The dye-forming reaction involving a two-equivalent coupler is referred to as elimination coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Furutachi N, Nakamura K, Ichijima S (1986) Nikkakyo Geppo. (3):10

    Google Scholar 

  2. Fischer R, Siegrist (1914) Photogr Korres. 51: 18

    CAS  Google Scholar 

  3. Gluck B (1947) The Manufacture of Agfacolor Material. Fiat Final Report. No. 943

    Google Scholar 

  4. Weissberger A, Salminen IF, Vittum PW (1949) US Patent 2 474 293

    Google Scholar 

  5. Loria A (1969) US Patent 3 476 563

    Google Scholar 

  6. Yagihara M, Yokota Y (1981) US Patent 4 264 722

    Google Scholar 

  7. Yagihara M, Yokota Y (1980) US Patent 4 228 233

    Google Scholar 

  8. Deguchi H, Endo T, Kikuchi S, Komaita T (1980) US Patent 4 205 990

    Google Scholar 

  9. Kobayashi H, Mihayashi K (1994) J Soc Photogr Sci Technol Jpn. 57: 316

    CAS  Google Scholar 

  10. Yamakawa K, Kobayashi H, Itoh I (1988) Jpn Kokai S63–258446

    Google Scholar 

  11. Ohkawa A, Kamio T, Motoki M, Mihayashi K (1992) US Patent 5 112 730

    Google Scholar 

  12. Furutachi N, Nakamura K, Ichijima S (1987) Yuki Gosei Kagaku Kyokai Shi. 45: 151

    Google Scholar 

  13. Loria A, Reckhow WA, Salminen IF (1961) US Patent 3 006 759

    Google Scholar 

  14. Loria A, Salminen IF (1965) US Patnt 3 214 437

    Google Scholar 

  15. Loria A, Salminen IF (1966) US Patent 3 253 924

    Google Scholar 

  16. Young DV (1968) US Patent 3 419 391

    Google Scholar 

  17. Loria A (1967) US Patent 3 311 476

    Google Scholar 

  18. Arai A, Oishi Y, Yamada M, Furutachi N, Nakamura K (1975) US Patent 3 926 631

    Google Scholar 

  19. Sawdey GW (1971) US Patent 3 617 291

    Google Scholar 

  20. Edens CO, Van Campen, JH (1971) US Patent 3 582 322

    Google Scholar 

  21. Arai A, Shiba K, Yamada M, Furutachi N, Nakamura K (1980) US Patent 4 237 217

    Google Scholar 

  22. Barr CR, Williams J, Whitmore KE (1966) US Patent 3 227 554

    Google Scholar 

  23. Aoki K, Seto N, Yabuki Y, Morigaki M, Furutachi N, Nakamura K (1982) US Patent 4 351 897

    Google Scholar 

  24. Mitsui A, Nakamura K (1983) US Patent 4 413 054

    Google Scholar 

  25. Kobayashi H, Okuzawa M, Kurono H, Okawa Y, Ohno T (1994) J Imaging Sci Technol. 38: 28

    CAS  Google Scholar 

  26. Krishnamurthy S, Johnston BH, Kilminster KN, Vogel DC, Buckland PR (1989) US Patent 4 853 319

    Google Scholar 

  27. Krishnmurthy S (1988) US Patent 4 740 438

    Google Scholar 

  28. Zengerle PL, Sowinski AF (1998) US Patent 5 726 003

    Google Scholar 

  29. Krishnamurthy S, Crawley MW, Bailey DS, Pawlak JL (2000) US Patent 6 015 657

    Google Scholar 

  30. Ichijima S, Yabuki Y, Watanabe T, Furutachi N (1982) US Patent 4 310 619

    Google Scholar 

  31. Sakanoue K, Furutachi N (1988) J Photogr Sci. 36: 64

    CAS  Google Scholar 

  32. Matsumoto K, Ito T (2002) US Patent 6 337 176 B1

    Google Scholar 

  33. Poslusny JN, Anderson LG, Mooberry JB, Wu ZZ (1996) US Patent 5 576 167

    Google Scholar 

  34. Slusarek WK, Poslusny JN, Wu ZZ (2001) US Patent 6 280 919 B1

    Google Scholar 

  35. Mizukawa Y, Naruse H, Watanabe T, Sato T (1995) US Patent 5 409 808

    Google Scholar 

  36. Sato K, Ishii Y, Yamakawa K (1995) US Patent 5 401 624

    Google Scholar 

  37. Weissberger A, Kibler CJ (1966) US Patent 3 265 506

    Google Scholar 

  38. McCrossen FC, Vittum PW, Weissberger A (1955) US Patent 2 728 658

    Google Scholar 

  39. Loria A (1969) US Patent 3 447 928

    Google Scholar 

  40. Porter RF (1970) US Patent 3 542 840

    Google Scholar 

  41. Loria A (1968) US Patent 3 408 194

    Google Scholar 

  42. Cameron RG, Neuberger D (1976) US Patent 3 933 501

    Google Scholar 

  43. Lau PTS (1983) US Patent 4 401 752

    Google Scholar 

  44. Ogawa A, Furuzawa H (1988) US Patent 4 770 983

    Google Scholar 

  45. Kunitz F-W, Salzmann H (1980) US Patent 4 186 019

    Google Scholar 

  46. Lowski D, Schranz K-W (1979) US Patent 4 146 400

    Google Scholar 

  47. Tang PW, Reynolds JH, Corcoran DE (2000) US Patent 6 130 032

    Google Scholar 

  48. Fujiwhara M, Matsuo S, Kojima T (1976) US Patent 3 973 968

    Google Scholar 

  49. Arai A, Oishi Y, Okumura A, Nakazyo K (1983) US Patent 4 404 724

    Google Scholar 

  50. Okumura A, Sugizaki A, Ichijima S, Shiba K, Nakazyo K (1976) Jpn Kokai S51–102636

    Google Scholar 

  51. Arai A, Oishi Y, Nakazyo K, Sugizaki A, Okumura A (1981) US Patent 4 269 936

    Google Scholar 

  52. Tchopp P (1980) US Patent 4 206 278

    Google Scholar 

  53. Quaglia A (1980) US Patent 4 182 630

    Google Scholar 

  54. Tsuruta M, Mizukura N, Nakagawa S (1991) US Patent 4 992 360. See also Kaneko Y (1993) J Soc Photogr Sci Technol Jpn. 56: 301

    Google Scholar 

  55. Dahlhause U, Langen H, Wiesen H (2001) US Patent 6 297 385 B1

    Google Scholar 

  56. Crawley MW (2001) US Patent 6 190 853 B1

    Google Scholar 

  57. Shimura Y, Kobayashi H, Yoshioka Y (1995) US Patent 5 427 902

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fujita, S. (2004). Two-Equivalent Couplers. In: Organic Chemistry of Photography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09130-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09130-2_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05902-5

  • Online ISBN: 978-3-662-09130-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics