Skip to main content

Zusammenfassung

Kapnometrie ist die Messung des Kohlendioxids (CO2) im Atemgas während des gesamten Atemzyklus, Kapnographie die fortlaufende Darstellung der kapnometrisch erfaßten CO2-Kurve auf einem Monitor oder einem permanenten Registriersystem. Die entsprechenden Geräte werden als Kapnometer oder als Kapnograph bezeichnet, eine dargestellte Kurve als Kapnogramm. Oft wird in eingeschränkter und nicht ganz korrekter Weise unter Kapnometrie die fortlaufende Messung und Anzeige des endexspiratorischen CO2-Wertes verstanden, ggf. kombiniert mit dem inspiratorischen Wert [2, 20]. In Abhängigkeit vom verwendeten Meßprinzip wird entweder der CO2-Partialdruck (PCO2) oder die fraktionelle CO2-Konzentration (FCO2) bestimmt. Beide können über die Beziehung PCO2 = FCO2 (pB — pH2O) ineinander umgerechnet werden (pB = Barometerdruck; pH2O = Wasserdampfdruck). Viele neue Geräte erlauben wahlweise die Darstellung als PCO2 oder FCO2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Literatur

  1. Arai T, Hatano Y, Mori K (1987) Transcutaneous monitoring during high-frequency jet ventilation. Crit Care Med 15:882–883

    Article  CAS  PubMed  Google Scholar 

  2. Bhavani-Shankar K, Mosely H, Kumar AY, Delph Y (1992) Capnometry and anaesthesia. Can J Anaesth 39:617–632

    Article  CAS  PubMed  Google Scholar 

  3. Blanch L, Fernandez R, Artigas A (1992) The expiratory capnogram in mechanically ventilated patients. In: Vincent JL (ed) Yearbook of intensive care and emergency medicine. Springer, Berlin Heidelberg New York Tokyo, pp 411–415

    Google Scholar 

  4. Blanch L, Fernandez R, Benito S et al. (1987) Effect of PEEP on the arterial minus end-tidal carbon dioxide gradient. Chest 92:451–454

    Article  CAS  PubMed  Google Scholar 

  5. Bowe EA, Boysen PG, Broome JA, Klein EF (1989) Accurate determination of end-tidal carbon dioxide during administration of oxygen by nasal cannula. J Clin Monit 5: 105–110

    Article  CAS  PubMed  Google Scholar 

  6. Brampton WJ, Watson RJ (1990) Arterial to end-tidal carbon dioxide tension difference during laparoscopy. Anaesthesia 45:210–214

    Article  CAS  PubMed  Google Scholar 

  7. Brunner JX, Westenskow DR (1988) How the rise time of carbon dioxide analysers influences the accuracy of carbon dioxide measurements. Br J Anaesth 61:628–638

    Article  CAS  PubMed  Google Scholar 

  8. Callaham M, Barton C (1990) Prediction of outcome of cardiopulmonary resuscitation from end-tidal carbon dioxide concentration. Crit Care Med 18:358–362

    Article  CAS  PubMed  Google Scholar 

  9. Carlon GC, Ray C, Midownik S et al. (1988) Capnography in mechanically ventilated patients. Crit Care Med 16:550–556

    Article  CAS  PubMed  Google Scholar 

  10. Carroll GC (1992) Capnographic trend curve monitoring can detect 1-ml pulmonary emboli in humans. J Clin Monit 8:101–106

    Article  CAS  PubMed  Google Scholar 

  11. Chopin C, Fesard P, Mangalaboyi J et al. (1993) Use of capnography in diagnosis of pulmonary embolism during acute respiratoryfailure of chronic obstructive pulmonary disease. Crit Care Med 18:353–357

    Article  Google Scholar 

  12. Dellinger RP, Zimmerman JL (1992) Continuous intra-arterial blood gas monitoring. In: Vincent JL (ed) Yearbook of intensive care and emergency medicine. Springer, Berlin Heidelberg New York Tokyo, pp 401–410

    Google Scholar 

  13. Dunn SM, Mushlin PS, Lind LJ, Raemer D (1990) Tracheal intubation is not invariably confirmed by capnography. Anesthesiology 73:1285–1287

    Article  CAS  PubMed  Google Scholar 

  14. Falk JL, Rackow EC, Weil MH (1988) End-tidal carbon dioxide concentration during cardiopulmonary resuscitation. New Engl J Med 318:607–611

    Article  CAS  PubMed  Google Scholar 

  15. Fletcher R, Jonson B (1984) Dead space and the single breath test for carbon dioxide during anaesthesia and artificial ventilation. Br J Anaesth 56:109–119

    Article  CAS  PubMed  Google Scholar 

  16. Fretschner R, Warth H, Deusch H, Klöss T (1992) Kapnometrie in der Kinderanästhesie. Einfluß von Meßort und Atemfrequenz. Anaesthesist 41:463–467

    CAS  PubMed  Google Scholar 

  17. From RP, Scamman FL (1988) Ventilatory frequency influences accuracy of end-tidal CO2 measurements. Analysis of seven capnometers. Anesth Analg 67:884–886

    CAS  PubMed  Google Scholar 

  18. Good ML (1990) Capnography: uses, interpretation, and pitfalls. In: Barash PG (ed) ASA refresher courses in anesthesiology, vol 18. Lippincott, Philadelphia, pp 175–193

    Google Scholar 

  19. Gravenstein JS, Paulus DA, Hayes TJ (1989) Capnography in clinical practice. Butterworths, Boston London Singapore

    Google Scholar 

  20. Hess D (1993) Capnography: technical aspects and clinical applications. In: Kacmarek RM, Hess D, Stoller JK (eds) Monitoring in respiratory care. Mosby, St. Louis Baltimore Boston, pp 375–405

    Google Scholar 

  21. Hoffman RA, Krieger BP, Kramer MR et al. (1989) End-tidal carbon dioxide in critically ill patients during changes in mechanical ventilation. Am Rev Resp Dis 140:1265–1268

    Article  CAS  PubMed  Google Scholar 

  22. Jardin F, Genevray B, Pazin M et al. (1985) Inability to titrate PEEP by the arterial minus end-tidal carbon dioxide gradient. Anesthesiology 62:530–535

    Article  CAS  PubMed  Google Scholar 

  23. Kavanagh BP, Sandler AN, Turner KE et al. (1992) Use of end-tidal PCO2 as noninvasive measurement of arterial PCO2 in extubated patients recovering from general anesthesia. J Clin Monit 8:226–230

    Article  CAS  PubMed  Google Scholar 

  24. Kinasewitz GT (1982) Use of end-tidal capnography during mechanical ventilation. Resp Care 27:169–171

    Google Scholar 

  25. Lumsden T, Marshall WR, Divers GA Riccitelli SD (1994) The PB3300 intrarterial blood gas system. J Clin Monit 10: 59–66

    Article  CAS  PubMed  Google Scholar 

  26. MacLeod BA, Heller MB, Gerard J et al. (1991) Verification of endotracheal tube placement with colorimetric end-tidal CO2 detection. Ann Emerg Med 20:267–270

    Article  CAS  PubMed  Google Scholar 

  27. McEvedy BAB, McLeod ME, Kirpalani H, Lerman J (1990) End-tidal carbon dioxide measurements in critically ill neonates: a comparison of sidestream and mainstream capnometers. Can J Anaesth 37:322–326

    Article  CAS  PubMed  Google Scholar 

  28. McNulty SE, Roy J, Torjman M, Seltzer JL (1990) Relationship between arterial carbon dioxide and end-tidal carbon dioxide when a nasal sampling port is und. J Clin Monit 6: 93–98

    Article  CAS  PubMed  Google Scholar 

  29. McPeak HB, Palayiwa E, Robinson GC, Sykes MK (1992) An evaluation of the Brüel and Kjaer monitor 1304. Anaesthesia 47:41–47

    Article  CAS  PubMed  Google Scholar 

  30. Mogue LR, Rantala B (1988) Capnometers. J Clin Monit 4:115–121

    Article  CAS  PubMed  Google Scholar 

  31. Moratin P, Lazarus G, Hartung E (1992) Zuverlässigkeit proximaler und distaler Gasproben in der Säuglingskapnometrie. Anaesthesist 41:307–312

    CAS  PubMed  Google Scholar 

  32. Murray IP, Modell JH, Gallagher JT, Banner MJ (1984) Titration of PEEP by the arterial minus end-tidal carbon dioxide gradient. Chest 85:100–104

    Article  CAS  PubMed  Google Scholar 

  33. Ornato JP (1993) Hemodynamic monitoring during CPR. Ann Emerg Med 22: 289–295

    Article  CAS  PubMed  Google Scholar 

  34. Phan CQ, Tremper KK, Lee SE, Barker SJ (1987) Noninvasive monitoring of carbon dioxide: a comparison of partial pressure of transcutaneous and end-tidal carbon dioxide with the partial pressure of arterial carbon dioxide. J Clin Monit 3:149–154

    Article  CAS  PubMed  Google Scholar 

  35. Raemer DB, Calalang I (1991) Accuracy of end-tidal carbon dioxide tension analyzers. J Clin Monit 7:195–208

    Article  CAS  PubMed  Google Scholar 

  36. Raemer DB, Francies D, Philipp JH, Gabel RA (1983) Variation in PCO2 between arterial blood and peak expired gas during anesthesia. Anesth Analg 62:1065–1069

    Article  CAS  PubMed  Google Scholar 

  37. Reid CW, Martineau RJ, Miller DR et al. (1992) A comparison of transcutaneous, end-tidal and arterial measurements of carbon dioxide during general anaesthesia. Can J Anaesth 39:31–36

    Article  CAS  PubMed  Google Scholar 

  38. Roth JV, Barth LJ, Womack LH, Morgenlander LE (1994) Evaluation of two commercially available carbon dioxide sampling nasal cannula. J Clin Monit 10:237–243

    Article  CAS  PubMed  Google Scholar 

  39. Sayah AJ, Peacock WF, Overton DT (1990) End-tidal CO2 measurement in the detection of esophageal intubation during cardiac arrest. Ann Amerg Med 19:857–860

    Article  CAS  Google Scholar 

  40. Shapiro BA, Mahutte CK, Cane RD, Gilmour IJ (1993) Clinical performance of a blood gas monitor: a prospective multicenter trial. Crit Care Med 21:487–494

    Article  CAS  PubMed  Google Scholar 

  41. Smalhout B, Kalenda Z (1975) An atlas of capnography. Kerckebosch, Zeist (NL)

    Google Scholar 

  42. Snyder JV, Elliot JL, Grenvik A (1982) Capnography. In: Spence AA (ed) Respiratory monitoring in intensive care. Churchill Livingstone, Edinburgh London Melbourne New York, pp 100–121

    Google Scholar 

  43. Sum Ping ST, Mehta MP, Symreng T (1991) Reliability of capnography in identifying esophageal intubation with carbonated beverage or antacid in the stomach. Anesth Analg 73:333–337

    Article  CAS  PubMed  Google Scholar 

  44. Swedlow DB (1986) Capnometry and capnography: the anesthesia disaster early warning system. Seminars in Anesthesia 5 (3): 194–205

    Google Scholar 

  45. Swedlow DB (1993) Respiratory gas monitoring. In: Saidman LJ, Smith NT (eds) Monitoring in anesthesia, 3rd edn. Butterworth-Heinemann, Boston London Oxford, pp 27–50

    Google Scholar 

  46. Varon AJ, Morrina J, Civetta JM (1991) Clinical utility of a colorimetric end-tidal CO2 detector in cardiopulmonary resuscitation and emergency intubation. J Clin Monit 7: 289–293

    Article  CAS  PubMed  Google Scholar 

  47. Westenskow DR, Smith KW, Coleman DL et al. (1989) Clinical evaluation of a Raman scattering multiple gas analyzer for the operating room. Anesthesiology 70:350–355

    Article  CAS  PubMed  Google Scholar 

  48. Williamson JA, Webb RK, Cockings J, Morgan C (1993) The capnograph: applications and limitations — An analysis of 2000 incident reports. Anaesth Intensive Care 21: 551–557

    CAS  PubMed  Google Scholar 

  49. Yamanaka M, Sue D (1987) Comparison of arterial-end-tidal PCO2 difference and dead space/tidal volume ratio in respiratoryfailure. Chest 92:832–835

    Article  CAS  PubMed  Google Scholar 

  50. Zander R, Mertzlufft F (1992) Überprüfung der Präzision von Kapnometern. Anästhesiol Intensivmed Notfallmed Schmerzther 27:42–50

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pasch, T. (1995). Kapnometrie und Kapnographie. In: List, W.F., Metzler, H., Pasch, T. (eds) Monitoring in Anästhesie und Intensivmedizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-08840-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08840-1_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-08841-8

  • Online ISBN: 978-3-662-08840-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics