Skip to main content

Age-related Changes in the Regulation of the Hypothalamic-Pituitary Adrenal Axis: The Role of Personality Variables

  • Chapter
Endocrine Aspects of Successful Aging: Genes, Hormones and Lifestyles

Summary

The hypothalamic-pituitary adrenal (HPA) axis is one of the most important endocrine stress systems in humans. The HPA axis is activated upon the advent of a stressor, and as a consequence a cascade of hormones is released that serve different functions throughout the human organism, generally aimed at providing the necessary metabolic and immunomodulatory adjustments in response to a physiological or psychological stressor.

Basal secretion of the endproduct of the HPA axis, cortisol, follows a circadian rhythm, with the highest levels early in the morning and the lowest levels at night. Moreover, when released in response to stress, cortisol induces a negative feedback in the central nervous system (CNS) to terminate activity of the HPA axis when the stressor is no longer present. This normalization of activity is believed necessary to protect the organism from the long-term detrimental effects of chronic activation of the HPA axis.

Normal aging is accompanied by a number of changes in the regulation and activity of the HPA axis. Basal cortisol levels, especially at night around the time of the nadir, are increased, and feedback sensitivity to cortisol at different levels of the CNS is decreased.

The hippocampus is discussed as one of the structures involved in the changes of HPA regulation with aging. Receptors for glucocorticoids are primarily located in the hippocampus, and recent evidence suggests that basal cortisol and ACTH levels might be inversely associated with hippocampal volume, and thus might be at the origin of the age-related changes. Moreover, it has been shown that the inhibitory effect of glucocorticoid feedback on subsequent activity of the HPA axis is diminished in elderly subjects. Recently, we investigated cortisol levels during human aging together with CNS structures and personality variables. It appears that aging is not predictive of HPA axis regulation and structural CNS changes per se, but that specific personality types are less affected by age-related changes of the CNS and HPA axis regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Boscaro M, Paoletta A, Scarpa E, Barzon L, Fusaro P, Fallo F, Sonino N (1998) Age-related changes in glucocorticoid fast feedback inhibition of adrenocorticotropin in man. J Clin Endocrinol Metab 83: 1380–1383

    Article  PubMed  CAS  Google Scholar 

  • Celsis P (2000) Age-related cognitive decline, mild cognitive impairment or preclinical Alzheimer’s disease? Ann Med 32: 6–14

    Article  PubMed  CAS  Google Scholar 

  • Collins L, Evans AC (1999) Animal: Automatic nonlinear image matching and anatomical labeling, Brain warping. Academic Press, San Diego

    Google Scholar 

  • Collins DL, Neelin P, Peters TM, Evans AC (1994) Automatic 3D intrersubject registration of MR volumetric data in standardized Talairach space. J Computer Assisted Tomography 18: 192–205

    Article  CAS  Google Scholar 

  • De Kloet ER, Vreugdenhil E, Oitzl MS, Joels M (1998) Brain corticosteroid receptor balance in health and disease. Endocrinol Rev 19: 269–301

    Article  Google Scholar 

  • Dodt C, Theine KJ, Uthgenannt D, Born J, Fehm HL (1994) Basal secretory activity of the hypothalamo-pituitary-adrenocortical axis is enhanced in healthy elderly. An assessment during undisturbed night-time sleep. Eur J Endocrinol 131: 443–450

    Google Scholar 

  • Ge Y, Grossman RI, Babb JS, Rabin ML, Mannon LJ, Kolson DL (2002) Age-related total gray matter and white matter changes in normal adult brain. Part II: Quantitative magnetization transfer ratio histogram analysis. AJNR Am J Neuroradiol 23: 1334–1341

    Google Scholar 

  • Haus E, Touitou Y (1994) Principles of clinical chronobiology. In: Touitou Y, Haus E (eds) Biologic rhythms in clinical and laboratory medicine. Springer Verlag, Berlin, 6–33

    Google Scholar 

  • Jernigan TL, Press GA, Hesselink JR (1990) Methods for measuring brain morphologic features on magnetic resonance images: validation and normal aging. Arch Neurol 47: 27–32

    Article  PubMed  CAS  Google Scholar 

  • Kirschbaum C, Pirke KM, Hellhammer DH (1993) The `Trier Social Stress Test’-a tool for investigating psychobiological stress responses in a laboratory setting. Neuropsychobiology 28: 76–81

    Article  PubMed  CAS  Google Scholar 

  • Kirschbaum C, Prüssner JC, Stone AA, Federenko I, Gaab J, Lintz D, Schommer N, Hellhammer DH (1995) Persistent high cortisol responses to repeated psychological stress in a subpopulation of healthy men. Psychosomatic Med 57: 468–474

    CAS  Google Scholar 

  • Kirschbaum C, Wolf OT, May M, Wippich W, Hellhammer DH (1996) Stress-and treatment-induced elevations of cortisol levels associated with impaired declarative memory in healthy adults. Life Sci 58: 1475–1483

    Article  PubMed  CAS  Google Scholar 

  • Lupien S, Gaudeau S, Tchiteya BM, Maheu F, Sharma S, Nair NPV, Hauger RL, McEwen BS, Menaey MJ (1997) Stress-induced declarative memory impairment in healthy elderly subjects: relationship to cortisol reactivity. J Clin Endocrinol Metab 82: 2070–2075

    Article  PubMed  CAS  Google Scholar 

  • Lupien SJ, de Leon M, de Santi S, Convit A, Tarshish C, Nair NP, Thakur M, McEwen BS, Hauger RL, Meaney MJ (1998) Cortisol levels during human aging predict hippocampal atrophy and memory deficits [see comments]. Nature Neurosci 1: 69–73

    Article  PubMed  CAS  Google Scholar 

  • Magarinos AM, McEwen BS (1995a) Stress-induced atrophy of apical dendrites of hippocampal CA3c neurons: involvement of glucocorticoid secretion and excitatory amino acid receptors. Neuroscience 69: 89–98

    Article  PubMed  CAS  Google Scholar 

  • Magarinos AM, McEwen BS (1995b) Stress-induced atrophy of apical dendrites of hippocampal CA3c neurons: comparison of stressors. Neuroscience 69: 83–88

    Article  PubMed  CAS  Google Scholar 

  • Magarinos AM, McEwen BS, Flugge G, Fuchs E (1996) Chronic psychosocial stress causes apical dendritic atrophy of hippocampal CA3 pyramidal neurons in subordinate tree shrews. J Neurosci 16: 3534–3540

    PubMed  CAS  Google Scholar 

  • McEwen BS (1997) Possible mechanisms for atrophy of the human hippocampus. Mol Psychiatr 2: 255–262

    Article  CAS  Google Scholar 

  • McEwen BS (1998a) Protective and damaging effects of stress mediators. N Engl J Med 338: 171–179

    Article  PubMed  CAS  Google Scholar 

  • McEwen BS (1998b) Stress, adaptation, and disease. Allostasis and allostatic load. Ann NY Acad Sci 840: 33–44

    Article  PubMed  CAS  Google Scholar 

  • McEwen BS (2001) Plasticity of the hippocampus: adaptation to chronic stress and allostatic load. Ann NY Acad Sci 933: 265–277

    Article  PubMed  CAS  Google Scholar 

  • Molloy DW, Standish TI (1997) A guide to the standardized Mini-Mental State Examination. Int Psychogeriatr 9: 87–94; discussion 143–50

    Google Scholar 

  • O’Sullivan M, Jones DK, Summers PE, Morris RG, Williams SC, Markus HS (2001) Evidence for cortical “disconnection” as a mechanism of age-related cognitive decline. Neurology 57: 632–638

    Article  PubMed  Google Scholar 

  • Pruessner JC, Wolf OT, Hellhammer DH, Buske-Kirschbaum AB, vonAuer K, Jobst S, Kaspers F, Kirschbaum C (1997) Free cortisol levels after awakening: a reliable biological marker for the assessment of adrenocortical acitvity. Life Sci 61: 2539–2549

    Article  PubMed  CAS  Google Scholar 

  • Pruessner JC, Hellhammer DH, Kirschbaum C (1998) Low self-esteem, induced failure and the adrenocortical stress response. Personality Individual Differences 27: 477–489

    Article  Google Scholar 

  • Pruessner JC, Hellhammer DH, Kirschbaum C (1999) Burnout, perceived stress, and cortisol responses to awakening. Psychosom Med 61: 197–204

    PubMed  CAS  Google Scholar 

  • Pruessner JC, Kohler S, Crane J, Pruessner M, Lord C, Byrne A, Kabani N, Collins DL, Evans AC (2003) Volumetry of temporopolar, perirhinal, entorhinal and parahippocampal cortex from high-resolution MR images: considering the anatomical variability of the collateral sulcus. Cereb Cortex, in press

    Google Scholar 

  • Pruessner JC, Li LM, Serles W, Pruessner M, Collins DL, Kabani N, Evans AC (2000) Volumetry of hippocampus and amygdala with high-resolution MRI and 3D analyzing software:

    Google Scholar 

  • minimizing the discrepancies between laboratories. Cereb Cortex 10: 433–442 Rosen G (1982) Alzheimer Disease Assessment Scale. Neuropsychologica 13: 34–43 Sapolsky RM, Krey LC, McEwen BS (1986) The neuroendocrinology of stress and aging: the glucocorticoid cascade hypothesis. Endocrinol Rev 7: 284–301

    Google Scholar 

  • Sapolsky RM, Romero LM, Munck AU (2000) How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocrinol Rev 21: 55–89

    Article  CAS  Google Scholar 

  • Seeman TE, Robbins RJ (1994) Aging and hypothalamic-pituitary-adrenal response to challenge in humans. Endocrinol Rev 15: 233–260

    CAS  Google Scholar 

  • Sled JG, Zijdenbos AP, Evans AC (1998) A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 17: 87–97

    Article  PubMed  CAS  Google Scholar 

  • Talairach J, Tournoux P (1988) Co-planar stereotactic atlas of the human brain; 3-dimensional proportional system: an approach to cerebral imaging. Thieme, New York

    Google Scholar 

  • Teng EL, Chui HC, Gong A (1989) Comparisons between the Mini-Mental State Exam (MMSE) and its modified version - the 3MS test. In: Hasegama K, Homma A (eds) Psychogeriatrics: Biomedical and social advances. Selected proceedings of the fourth congress of the International Psychogeriatrics Association. Excerpta Medica, Tokyo

    Google Scholar 

  • Van Cauter E, Coevorden Av, Blackman J (1990) Modulation of neuroendocrine release by sleep and circadian rhythmicity. In: Yen SSC, Vale WW (eds) Advances in neuroendocrine regulation of reproduction. Serono Symposium, Norwell, 113–122

    Google Scholar 

  • Van Cauter E, Leproult R, Kupfer DJ (1996) Effects of gender and age on the levels and circadian rhythmicity of plasma cortisol. J Clin Endocrinol Metab 81: 2468–2473

    Article  PubMed  Google Scholar 

  • Van Coevorden A, Mockel J, Laurent E, Kerkhofs M, L’Hermite Baleriaux M, Decoster C, Neve P, Van Cauter E (1991) Neuroendocrine rhythms and sleep in aging men. Am -J Physiol 260: E651–61

    PubMed  Google Scholar 

  • Wilkinson CW, Peskind ER, Raskind MA (1997) Decreased hypothalamic-pituitary-adrenal axis sensitivity to cortisol feedback inhibition in human aging. Neuroendocrinology 65: 79–90

    Article  PubMed  CAS  Google Scholar 

  • Wishart D (1998) Clustan graphics3: interactive graphics for cluster analysis. In: Gaul W, Locarek-Junge H (eds) Classification in the information age. Proceedings of the 22nd annual conference of the Society for Classification.. Springer, Berlin, pp. 268–275

    Google Scholar 

  • Wolf OT, Neumann O, Hellhammer DH, Geiben AC, Strasburger CJ, Dressendörfer RA, Pirke KM, Kirschbaum C (1997) Effects of a two-week physiological dehydroepiandrosterone substitution on cognitive performance and well-being in healthy elderly women and men. J Clin Endocrinol Metab 82: 2363–2367

    Article  PubMed  CAS  Google Scholar 

  • Wolf OT, Convit A, de Leon MJ, Caraos C, Qadri SF (2002) Basal hypothalamo-pituitary-adrenal axis activity and corticotropin feedback in young and older men: relationships to magnetic resonance imaging-derived hippocampus and cingulate gyrus volumes. Neuroendocrinology 75: 241–249

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pruessner, J.C., Lord, C., Renwick, R., Meaney, M., Lupien, S. (2004). Age-related Changes in the Regulation of the Hypothalamic-Pituitary Adrenal Axis: The Role of Personality Variables. In: Chanson, P., Epelbaum, J., Lamberts, S., Christen, Y. (eds) Endocrine Aspects of Successful Aging: Genes, Hormones and Lifestyles. Research and Perspectives in Endocrine Interactions. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07019-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07019-2_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07359-5

  • Online ISBN: 978-3-662-07019-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics