Skip to main content

Violation of the Noncrossing Rule: The Hubbard Hamiltonian for Benzene

  • Chapter
Condensed Matter Physics and Exactly Soluble Models

Abstract

The Hubbard Hamiltonian, while not one of the most successful models for π electrons in benzene, has been extensively investigated in the literature. As part of our general study of that model, we have computed all the energy levels for all values of the repulsion parameter—a task that has not been undertaken before. After extracting all the symmetry of the model we found, to our great surprise, many instances of permanent degeneracy of levels with different symmetry and also crossing of levels of the same symmetry. We can also demonstrate that there is no hidden symmetry to account for these effects. Since these results run counter to one of the oldest folk theorems in quantum chemistry, our otherwise uninspiring graphs may be of general interest.

Accorded the Boris Pregel Award for Research in Chemical Physics in 1970 by the New York Academy of Sciences.

This work was partially supported by National Science Foundation Grant GP-9414.

This work was partially supported by Statens Naturvidenskabelige Forskningsraad grant 511-208/69.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Goeppert-Mayer., M. and A. L. Sklar. 1938. J. Chem. Phys. 6: 645.

    Google Scholar 

  2. Lykos, P. G. and R. G. Parr. 1956. J. Chem. Phys. 24: 1166; Lykos, P. G. and R. G. Parr. 1956. J. Chem. Phys. 25: 1301.

    Google Scholar 

  3. Heitler,W. and F. London.1927. Z. Phys. 44: 455.

    Article  MATH  Google Scholar 

  4. Mattheiss,L. F. 1961. Phys. Rev. 123: 1209.

    Article  ADS  Google Scholar 

  5. Hubbard, J. 1963. Proc. Roy. Soc. ( London ) A276: 238.

    Google Scholar 

  6. Linderberg, J. and Y. Ohrn. 1965. Proc. Roy. Soc. ( London ) A285: 445.

    Google Scholar 

  7. Lieb, E. H. and F. Y. Wu. 1968. Phys. Rev. Lett. 20: 1445.

    Google Scholar 

  8. Cairn, Y. and J. Linderberg. 1965. Phys. Rev. 139: A1063.

    Google Scholar 

  9. Kearns, D. R. 1962. J. Chem. Phys. 36: 1608.

    Google Scholar 

  10. Koutecky,J. 1967. J. Chem. Phys. 47: 1501.

    Article  ADS  Google Scholar 

  11. Linderberg, J. and E. W. Thulstrup. 1968. J. Chem. Phys. 49: 710.

    Google Scholar 

  12. Linderberg, J. and Y. Ohrn. 1968. J. Chem. Phys. 49: 716.

    Google Scholar 

  13. Koutecky, J. Hlavaty and P. Hochmann. 1965. Theoret. Chim Acta 3: 341.

    Google Scholar 

  14. Hund, F. 1927. Phys. 40: 742.

    Article  MathSciNet  Google Scholar 

  15. V. Neumann, J. E. Wigner. 1929. Phys. Zeit. 30: 467.

    MATH  Google Scholar 

  16. Landau, L. D. and E. M. Lifshitz. 1958. Quantum Mechanics (London): 262. 17

    Google Scholar 

  17. Eyring, H., J. Walter and G. E. Kimball.1944. Quantum Chemistry (New York): 206.

    Google Scholar 

  18. Merzbacher, E. 1961. Quantum Mechanics (New York): 407.

    Google Scholar 

  19. Ballhausen, C. J. and H. B. GRAY. 1964. Molecular Orbital Theory (New York): 36.

    Google Scholar 

  20. Davydov V, A. S. 1965. Quantum Mechanics (New York): 175.

    Google Scholar 

  21. Coulso N, C. A. 1961. Valence (Oxford): 69.

    Google Scholar 

  22. Koutecky, J. 1966. J. Chem. Phys. 44: 3702.

    Google Scholar 

  23. Koutecky, J. 1966. J. Chem. Phys. 45: 3668.

    Google Scholar 

  24. Heilmann, O. J. 1970. Kpbenhavns Universitet, Afdeling for Teoretisk Kemi. Rapport nr. 6.

    Google Scholar 

  25. Pariser, R. 1956. J. Chem. Phys. 24: 250.

    Google Scholar 

  26. Herzberg,G. Electronic Spectra of Polyatomic Molecules. D. van Nostrand. Princeton, N.J.: 666.

    Google Scholar 

  27. Teller, E. 1937. J. Phys. Chem. 41: 109.

    Article  Google Scholar 

  28. Heilmann, O. J. 1970. J. Math. Phys. 11: 3317.

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Heilmann, O.J., Liebt, E.H. (2004). Violation of the Noncrossing Rule: The Hubbard Hamiltonian for Benzene. In: Nachtergaele, B., Solovej, J.P., Yngvason, J. (eds) Condensed Matter Physics and Exactly Soluble Models. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06390-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06390-3_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-06093-9

  • Online ISBN: 978-3-662-06390-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics