Skip to main content

Abstract

The following is a brief description of Elliott Lieb’s papers on Condensed Matter Physics and on Exactly Soluble Models. The numbers refer to the publication list of Elliott Lieb, which appears at the end of this volume. Some of the papers that are not included in this volume Condensed Matter Physics and Exactly Soluble Models appear in the other Selectas of Elliott Lieb, namely The Stability of Matter: From Atoms to Stars,Inequalities, and Statistical Mechanics. The publication list shows which papers appear in which Selecta. The papers in this Selecta are additionally marked in boldface with their numbers as given in the table of contents. The numbers in square brackets refer to works by other authors, which are listed at the end of this survey.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.J. Baxter, Exactly Solved Models in Statistical Mechanics, Academic Press, New York, 1982.

    MATH  Google Scholar 

  2. M. Donsker, S.R.S. Varadhan, Asymptotic evaluation of certain Markov process expectations for large times. IV., Comm. Pure Appl. Math. 36 (1983), 183-212; Asymptotics for the polaron, Commun. Pure Appl. Math. 36 (1983), 505 - 528.

    MathSciNet  MATH  Google Scholar 

  3. F.J. Dyson, Ground-State Energy of a Hard-Sphere Gas, Phys. Rev. 106 (1957), 20 - 26.

    Article  MATH  Google Scholar 

  4. F.J. Dyson, Ground-state Energy of a Finite System of Charged Particles, J. Math. Phys. 8 (1967), 1538 - 1545.

    Article  MathSciNet  ADS  Google Scholar 

  5. F.J. Dyson, Missed opportunities, Bull. Am. Math Soc. 78 (1972), 635 - 652.

    Article  MathSciNet  MATH  Google Scholar 

  6. M. Fames, B. Nachtergaele, R.F. Werner, Finitely Correlated States on Quantum Spin Chains, Commun. Math. Phys. 144 (1992), 443 - 490.

    ADS  Google Scholar 

  7. R.P. Feynman, Slow electrons in a polar crystal,Phys. Rev. 97 (1955), 660-665.

    Google Scholar 

  8. L.L. Foldy, Charged boson gas, Phys. Rev. 124 (1961), 649 - 651, Errata: Phys. Rev. 125 (1962), 2208.

    Google Scholar 

  9. K. Fredenhagen, K.-H. Rehren, B. Schroer, Superselection sectors with braid group statistics and exchange algebras. I. General theory, Comm. Math. Phys. 125 (1989), 201 - 226.

    MathSciNet  ADS  MATH  Google Scholar 

  10. I.B. Frenkel, M.G. Khovanov, Canonical bases in tensor products and graphical calculus for U q (sl2), Duke Math. J. 87 (1997), 409 - 480.

    MathSciNet  MATH  Google Scholar 

  11. H. Fröhlich, Theory of Electrical Breakdown in Ionic Crystals, Proc. Roy. Soc. 160 (1937), 230 - 241.

    Article  Google Scholar 

  12. H. Fröhlich, On the theory of superconductivity: the one-dimensional case, Proc. R. Soc. London Ser. A 223 (1954), 296 - 305.

    Article  ADS  MATH  Google Scholar 

  13. M. GaudinUn système a une dimension de fermions en interaction,Phys. Lett. 24A (1967), 55-56.

    Google Scholar 

  14. P.S. GoldbaumExistence of Solutions to the Bethe Ansatz Equations for the ID Hubbard Model on a Finite Lattice. arXiv:cond-mat/0403736.

    Google Scholar 

  15. F.D.M. Haldane, Continuum dynamics of the 1-D Heisenberg antiferromagnet: Identification with the O (3) nonlinear sigma model, Phys. Lett. 93A (1983), 464 - 468.

    Article  MathSciNet  Google Scholar 

  16. A.G. Izergin, Partition function of the six-vertex model in a finite volume, Soy. Phys. Dokl. 32 (1987), 878 - 879.

    Google Scholar 

  17. H. Jones, Applications of the Bloch Theory to the Study of Alloys and of the Properties of Bismuth, Proc. R. Soc. London Ser. A 147 (1934), 396 - 417.

    Article  ADS  Google Scholar 

  18. V.F.R. Jones, Index for subfactors, Invent. Math. 72 (1983), 1 - 25.

    MATH  Google Scholar 

  19. V.F.R. Jones, A polynomial invariant for knots via von Neumann algebras, Bull. Amer. Math. Soc. (N.S.) 12 1985, 103 - 111.

    Article  MathSciNet  Google Scholar 

  20. R.W. Kasteleyn, Dimer statistics and phase transitions, J. Math. Phys. 4 (1963), 287 - 293.

    Article  ADS  Google Scholar 

  21. L.H. Kauffman, S.L. Lins, Temperley-Lieb recoupling theory and invariants of 3-manifolds, Annals of Mathematics Studies, 134, Princeton University Press, Princeton, NJ, 1994.

    Google Scholar 

  22. B. Kaufman, Crystal Statistics. II. Partition Function Evaluated by Spinor Analysis, Phys. Rev. 76 (1949), 1232 - 1243.

    Article  Google Scholar 

  23. B. Kaufman, L. Onsager, Crystal Statistics. III. Short-Range Order in a Binary Ising Lattice, Phys. Rev. 76 (1949), 1244 - 1252.

    Article  MATH  Google Scholar 

  24. V. Korepin, Calculation of Norms of Bethe Wave Functions, Commun. Math. Phys. 86 (1982), 391 - 418.

    ADS  MATH  Google Scholar 

  25. G. Kuperberg, Another proof of the Alternating-Sign Matrix Conjecture, Internat. Math. Res. Notices, 1996 (1996), 139 - 150.

    Article  Google Scholar 

  26. G. Kuperberg, Symmetry classes of alternating-sign matrices under one roof, Ann. Math, 156 (2002), 835 - 866.

    Article  Google Scholar 

  27. L.D. Landau, Electron motion in crystal lattices, Phys. Z. Sowjet 3 (1933), 664 - 665.

    Google Scholar 

  28. T.D. Lee, K. Huang, C.N. Yang, Eigenvalues and eigenfunctions of a Bose system of hard spheres and its low-temperature properties, Phys. Rev. 106 (1957), 1135 - 1145.

    Article  MathSciNet  MATH  Google Scholar 

  29. T.D. Lee, F. Low and D. Pines, The motion of slow electrons in a polar crystal, Phys. Rev. 90 (1953), 297 - 302.

    Article  MathSciNet  MATH  Google Scholar 

  30. J.M. Luttinger, An exactly soluble model of a many-fermion system, J. Math. Phys. 4 (1963), 1154 - 1162.

    Article  ADS  Google Scholar 

  31. N. Macris, B. Nachtergaele, On the Flux Phase Conjecture at Half-Filling: An Improved Proof J. Stat. Phys. 85 (1996), 745 - 761.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. J.B. McGuire, Interacting fermions in one dimension. I. Repulsive potential, J. Math. Phys. 6 (1965), 432 - 439.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. W.H. Mills, D.P. Robbins, H. Rumsey, Alternating sign matrices and descending plane partitions, J. Combin. Theory, Ser. A 34 (1983), 340 - 359.

    Article  MathSciNet  MATH  Google Scholar 

  34. J.F. Nagle, Lattice statistics of hydrogen bonded crystals. I. The residual entropy of ice, J. Math. Phys. 7 (1966), 1484 - 1491.

    Google Scholar 

  35. L. Onsager, Crystal statistics. I. A two-dimensional model with an order-disorder transition, Phys. Rev. 65 (1944), 117 - 149.

    Article  Google Scholar 

  36. L. Pauling, The structure and entropy of ice and of other crystals with some randomness of atomic arrangement,J. Am. Chem. Soc. 57 (1935), 26802684.

    Google Scholar 

  37. R.E. Peierls, Quantum Theory of Solids, Clarendon, Oxford, 1995, p. 108.

    Google Scholar 

  38. R.E. Peierls, Surprises in theoretical physics, Princeton University Press, 1979.

    Google Scholar 

  39. S.I. Pekar, Untersuchung über die Elektronentheorie der Kristalle, Akademie Verlag, Berlin, 1954.

    Google Scholar 

  40. M. Schick, Two-Dimensional System of Hard Core Bosons, Phys. Rev. A 3 (1971), 1067 - 1073.

    Article  Google Scholar 

  41. B. Sutherland, Exact solution of a two-dimensional model for hydrogen-bonded crystals, Phys. Rev. Lett. 19 (1997), 103 - 104.

    ADS  Google Scholar 

  42. H.N.V. Temperley, Two-dimensional Ising models, in C. Domb, M.S. Green, Phase Transitions and Critical Phenomena, Vol. 1, Academic Press, 1972.

    Google Scholar 

  43. H.N.V. Temperley, M.E. Fisher, Dimer problem in statistical mechanics — an exact result, Philos. Mag. 6 (1961), 1061 - 1063.

    MathSciNet  MATH  Google Scholar 

  44. W.E. Thirring, A solvable relativistic field theory. Ann. Phys. 3 (1958), 91112.

    MathSciNet  Google Scholar 

  45. S. Tomonaga, Remarks on Bloch's method of sound waves applied to many-Fermion problems, Progress Theor. Phys. (Kyoto), 5 (1950), 544 - 569.

    Article  MathSciNet  Google Scholar 

  46. C.N. Yang, Some exact results for the many-body problem in one dimension with repulsive delta function interaction,Phys. Rev. Lett. 19 (1967), 1312-1315.

    Google Scholar 

  47. D. Zeilberger, Proof of the alternating sign matrix conjecture, Elec. J. Combin. 3 (2) (1996), R13.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nachtergaele, B., Solovej, J.P., Yngvason, J. (2004). A Survey by the Editors. In: Nachtergaele, B., Solovej, J.P., Yngvason, J. (eds) Condensed Matter Physics and Exactly Soluble Models. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06390-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06390-3_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-06093-9

  • Online ISBN: 978-3-662-06390-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics