Skip to main content

Bioremediation of Pesticide-Contaminated Soils

  • Chapter
Applied Bioremediation and Phytoremediation

Part of the book series: Soil Biology ((SOILBIOL,volume 1))

Abstract

About 4 million tonnes of pesticides are applied to agricultural crops annually for pest control worldwide. It is estimated that less than 1% of total applied pesticides generally gets to the target pests and most of the pesticides remain unused and enter into the ecosystem. The ultimate sink for excessive pesticides is soil and water. Despite their persistence in the environment, with a tendency of residues to bioaccumulate and be toxic to non-target organisms including humans, the use of chemical pesticides cannot be discontinued. Among various soil remediation technologies available today for decontamination and detoxification of pesticide-contaminated soils, bioremediation seems to be one of the most environmentally safe and cost effective methods (Fogarty and Tuovinen 1991; Häggblom 1992; Alexander 2000). Most of the pesticides generally fall under the major classes of chlorophenoxy acids, organochlorines, organophosphates, carbamates and s-triazines. This chapter focuses on microorganisms having the potential to degrade pesticides and on factors affecting pesticide biodégradation in contaminated soils.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aislabie JM, Richards NK, Boul HI (1997) Microbial degradation of DDT and its residues: a review. N Z J Agric Res 40:269–282

    CAS  Google Scholar 

  • Alexander M (2000) Aging, bioavailability, and overestimation of risk from environmental pollutants. Environ Sci Technol 34:4259–4265

    CAS  Google Scholar 

  • Ames RA, Hoyle BL (1999) Biodegradation and mineralization of atrazine in shallow subsurface sediments from Illinois. J Environ Qual 28:1674–1681

    CAS  Google Scholar 

  • Awasthi N, Ahuja R, Kumae A (2000) Factors influencing the degradation of soil-applied endosulfan isomers. Soil Biol Biochem 32:1697–1705

    CAS  Google Scholar 

  • Bachmann A, Bruin W, de Jumelet JC, Rijnaarts, HNN, Zehander AJB (1988) Aerobic biomineralization of α-hexachlorocyclohexane. Appl Environ Microbiol 54:548–559

    CAS  Google Scholar 

  • Bidlan R, Manonmani HK (2002) Aerobic degradation of dichlorodiphenyl-trichloroethane (DDT) by Serratia marcescens DT-1P Proc Biochem 38:49–56

    CAS  Google Scholar 

  • Bouguard C, Ouazzani J, Prom OJC, Michel-Briand Y, Piositl P (1997) Dechlorination of atrazine by a Rhizobium sp. isolate. Appl Environ Microbiol 63:862–866

    Google Scholar 

  • Bulinski DA, Nakatsu CH (1998) Involvement of a transposon in the dessimination of 2,4-D catabolic gene. 8th International Symposium on Microbial Ecology, 9–14 August, Halifax, Canada, p 115

    Google Scholar 

  • Bumpus JA, Powers RH, Sun T (1993) Biodegradation of DDE (l,l-dichloro-2,2-bis(4-chlorophenyl)ethane by Phanerochaete chrysosporium, Mycologia 97:95–98

    CAS  Google Scholar 

  • Buser H-R, MĂĽller MD (1997) Conversion reactions of various phenoxyalkanoic acid herbicides in soil. 2. Elucidation of the enantiomerization process of chiral phenoxy acids from incubation in a D2O/soil system. Environ Sci Technol 31:1960–1967

    CAS  Google Scholar 

  • Chapalmadugu S, Chaudhry GR (1993) Isolation of constitutively expressed enzyme for hydrolysis of carbaryl in Pseudomonas aeruginosa. J Bacteriol 157:6711–6716

    Google Scholar 

  • Charnay M-P, Fournier JC (1994) Study of the relation between carbofuran degradation and microbial or physico-chemical characteristics of some French soil. Pest Sci 40:207–216

    CAS  Google Scholar 

  • Chaudhary GR, Huang GH (1988) Isolation and characterization of a new plasmid from Flavobacterium sp. which carried genes for degradation of 2,4-dichlorophenoxy acetate. J Bacteriol 170:3897–3900

    Google Scholar 

  • Chaudhary GR, Mateen A, Kaskar B, Bloda M, Riazuddin S (2002) Purification and biochemical characterization of the carbamate hydrolase from Pseudomonas sp. 50432. Biotechnol Appl Biochem 36:63–70

    Google Scholar 

  • Commandeur LCM, Parsons JR (1990) Degradation of halogenated aromatic compounds. Biodegradation 1:207–220

    CAS  Google Scholar 

  • Cork DJ, Krueger JP (1991) Microbial degradation of herbicides and pesticides. Adv Appl Microbiol 36:1–66

    CAS  Google Scholar 

  • Dejonghe W, Goris J, El-Fantroussi S, Hofte M, De Vos P, Verstraete W, Topp EM (2000) Effect of dissemination of 2,4-dichlorophenoxyacetic acid (2,4-D) degradation plas- mids on 2,4-D degradation and on bacterial community structure in two different soil horizons. Appl Environ Microbiol 66:3297–3304

    CAS  Google Scholar 

  • De Souza M, Wacket LP, Bounty-Mills KL, Mandelbaum RT, Sadowsky MJ (1995) atzk encodes the first metabolic step for the degradation of the herbicide atrazine. Appl Environ Microbiol 61:3373–3378

    Google Scholar 

  • Dimond JB, Owen RB (1996) Long-term residue of DDT compounds in forest soils in Maine. Environ Pollut 92:227–230

    CAS  Google Scholar 

  • Don RH, Weightman AJ, Knackmuss HJ, Timmis KN (1985) Transposon mutagenesis and cloning analysis of the pathway for degradation of 2,4-dichlorophenoxyacetic acid and 3-chlorobenzoate in Alcaligenes eutrophus JMP134 (pJP4). J Bacteriol 161: 85–90

    CAS  Google Scholar 

  • Dousset S, Mouvet C, Schiavon M (1997) Degradation of [14C] terbuthylazine and [14C] atrazine in laboratory soil microcosms. Pestic Sei 49:9–16

    CAS  Google Scholar 

  • Duquenne P, Parekh NR, Catroux G, Fournier J-C (1996) Effect of inoculant density, formulation, dispersion and soil nutrient amendment on the removal of carbofuranresidues from contaminated soil. Soil Biol Biochem 28:1805–1811

    CAS  Google Scholar 

  • El-Fantroussi S (2000) Enrichment and molecular characterization of a bacterial culture that degrades methoxy-methyl urea herbicides and their aniline derivatives. Appl Environ Microbiol 66:5110–5115

    CAS  Google Scholar 

  • Fava F, Di Gioia D, Marchetti L (1998) Cyclodextrin effects on the ex-situ bioremediation of chronically polychlorinated biphenyl-contaminated soil. Biotechnol Bioeng 58:345–355

    CAS  Google Scholar 

  • Filer K, Harker AR (1997) Identification of the inducing agent of the 2,4-dichlorophenoxyacetic acid pathway encoded by plasmid pJP4. Appl Environ Microbiol 63: 317–320

    CAS  Google Scholar 

  • Fogarty AM, Tuovinen OH (1991) Microbiological degradation of pesticides in yard waste composting. Microbiol Rev 55:225–233

    CAS  Google Scholar 

  • Foght J, April T, Biggar K, Aislabie J (2001) Bioremediation of DDT-contaminated soils: a review. Biorem J 5:225–246

    CAS  Google Scholar 

  • Frantz B, Ngai KL, Chatterjee DK, Ornston LN, Chakarbarty AM (1987) Nucleotide sequence and expression of clcD, a plasmid borne dienelactone hydrolose gene from Pseudomonas sp. J Bacteriol 169:704–709

    CAS  Google Scholar 

  • Fulthorpe RR, Rhodes AN, Tiedje JM (1996) Pristine soils mineralize 3-chlorobenzoate and 2,4-dichlorophenoxyacetate via different microbial populations. Appl Environ Microbiol 62:1159–1166

    CAS  Google Scholar 

  • Gilbert ES, Walker AW, Keasling JD (2003) A constructed microbial consortium for biodegradation of the organophosphorus insecticide parathion. Appl Microbiol Biotechnol 61:77–81

    CAS  Google Scholar 

  • Gray NCC, Cline PR, Mosr GP, Moser LE, Guiler HA, Gray AL, Gannon DJ (1999) Full- scale bioremediation of chlorinated pesticides. In: Leeson A, Alleman BC (eds) Bioremediation of nitroaromatic and haloaromatic compounds. Battelle Press, Columbus, OH, pp 125–130

    Google Scholar 

  • Gunulan P, Fournier JC (1993) Effect of microbial competition on the survival and activity of 2,4-D degrading Alcaligenes xylosidans sub sp. denitrificans added to soil. Lett Appl Microbiol 16:178–181

    Google Scholar 

  • Gupta A, Kaushik CP, Kaushik A (2000) Degradation of hexachlorocyclohexane (HCH) by Bacillus circulans and Bacillus brevis isolated from soil contaminated with HCH. Soil Biol Biochem 32:1803–1805

    CAS  Google Scholar 

  • Häggblom MM (1992) Microbial breakdown of halogenated aromatic pesticides and related compounds. FEMS Microbiol Rev 103:29–72

    Google Scholar 

  • Halden RU, Tepp SM, Halden BG, Dwyer DF (1999) Degradation of 3-phenoxybenzoic acid in soil by Pseudomonas pseudoalcaligenes POB310 (pPOB) and two modified Pseudomonas strains. Appl Environ Microbiol 65:3354–3359

    CAS  Google Scholar 

  • Haugland RA, Sangodkar UMX, Chakrabarty AM (1990) Repeated sequences including RSI 100 from Pseudomonas cepacia AC1100 function as IS elements. Mol Gen Genet 220:222–228

    CAS  Google Scholar 

  • Hawkins AC, Harwood CS (2002) Chemotaxis of Ralstonia eutropha JMP134 (pJP4) to the herbicide 2,4-dichlorophenoxyacetate. Appl Environ Microbiol 68:968–972

    CAS  Google Scholar 

  • Hay AG, Focht DD (2000) Transformation of l,l-dichloro-2,2-(4~chlorophenyl)ethane (DDD) by Ralstonia eutropha strain A5. FEMS Microbiol Ecol 31:249–253

    CAS  Google Scholar 

  • Hayatsu M, Hirano M, Nagata T (1999) Involvement of two plasmids in the degradation of carbaryl by Arthrobacter sp. strain RC100. Appl Environ Microbiol 65: 1015–1019

    CAS  Google Scholar 

  • Horvath M, Ditzmuller G, Loidl M, Streichsbier F (1990) Isolation and characterization of 2-(2,4-dichlorophenoxy)propionic acid-degrading soil bacterium. Appl Microbiol Biotechnol 33:213–216

    CAS  Google Scholar 

  • Johri AK, Dua M, Tuteja D, Saxena R, Saxena DM, Lal R (1996) Genetic manipulation of microorganisms for the degradation of hexachlorocyclohexane. FEMS Microbiol Rev 19:1–15

    Google Scholar 

  • Johri AK, Dua M, Tuteja D, Saxena R, Saxena DM, Lal R (1998) Degradation of alpha, beta, gamma and delta-hexachlorocyclohexanes by Sphingomonas paucimobilis. Biotechnol Lett 20:885–887

    CAS  Google Scholar 

  • Kamanavalli CM, Ninnekar HZ (2000) Bio degradation of propoxur by Pseudomonas sp. World J Microbiol Biotechnol 16:329–331

    CAS  Google Scholar 

  • Kaneva I, Mulchandani A, Chen W (1998) Factors influencing parathion degradation by recombinant Escherichia coli with surface-expressed organophosphorus hydrolase. Biotechnol Prog 14:275–278

    CAS  Google Scholar 

  • Karns JS, Tomasek PH (1991) Carbofuran hydrolase purification and properties. J Agrie Food Chem 39:1004–1006

    CAS  Google Scholar 

  • Katz I, Gree M, Ruskol Y, Dosoretz CG (2000) Characterization of atrazine degradation and nitrate reduction by Pseudomonas sp. strain ADR Adv Environ Res 4:219–224

    Google Scholar 

  • Kennedy DW, Aust SD, Bumpus JA (1990) Comparative biodegradation of alkyl halide insecticides by the white rot fungus Phanerochaete chrysosporium (BKM-F-1767). Appl Environ Microbiol 56:2347–2353

    CAS  Google Scholar 

  • Kim Y-K, Kim S-H, Choi S-C (2001) Kinetics of endodulfan degradation by Phanerochaete chrysosporium. Biotechnol Lett 23:163–166

    CAS  Google Scholar 

  • Kim J-W, Rainina EI, Mulbry WW, Engler CR, Wild JR (2002) Enhanced-rate biodĂ©gradation of organophosphate neurotoxins by immobilized nongrowing bacteria. Biotechnol Prog 18:429–436

    CAS  Google Scholar 

  • Kohler A, Jager A, Willerschausen H, Graf H (1988) Extracellular ligninase of Phanerochaete chrysosporium has no role in degradation of DDT. Appl Microbiol Biotechnol 29:618–620

    Google Scholar 

  • Kuhad RC, Singh A, Eriksson K-EL (1997) Microorganisms and enzymes involved in the degradation of plant fiber cell walls. Adv Biochem Eng Biotechnol 57:45–125

    CAS  Google Scholar 

  • Kumar S, Mukerjee KG, Lal R (1996) Molecular aspects of pesticide degradation by microorganisms. Crit Rev Microbiol 22:1–26

    CAS  Google Scholar 

  • Kumari R, Subudhi S, Suar M, Dhingara G, Raina V, Dogra C, Lal S, van der Meer JR, Holliger C, Lal R (2002) Cloning and characterization of lin genes responsible for the degradation of hexachlorocyclohexane isomers by Sphingomonas paucimobilis Strain B90. Appl Environ Microbiol 68:6021–6028

    CAS  Google Scholar 

  • Kuritz T, Wolk CP (1995) Use of filamentous cyanobacteria for biodegradation of organic pollutants. Appl Environ Microbiol 61:234–236

    CAS  Google Scholar 

  • Lal R, Lal S, Dhanraj PS, Saxena DM (1995) Manipulation of catabolic genes for degradation and detoxification of xenobiotics. Adv Appl Microbiol 41:55–95

    CAS  Google Scholar 

  • Lal R, Dhanraj PS, Lal S, Saxena DM (1997) Genetic manipulation of microorganisms for degradation of pesticides. In: Parmar VS, Walia S (eds) Pesticides, crop protection and environment, Oxford & IBH, New Delhi, pp 264–277

    Google Scholar 

  • Lehr S, Scheunert I, Beese F (1996) Mineralization of free and cell wall-bound isopro-turon in soils in relation to soil microbial parameters. Soil Biol Biochem 28:1–8

    CAS  Google Scholar 

  • Leveau JHJ, Zehnder AJB, van der Meer JR (1998) The tfdK gene product facilitates the uptake of 2,4-dichlorophenoxyacetate by Ralstonia eutropha JMP134 (pJP4). J Bacteriol 180:2237–2243

    CAS  Google Scholar 

  • Mata-Sandoval JC, Karns J, Torrents A (2000) Effects of rhamnolipids produced by Pseudomonas aeruginosa UG2 on the solubilization of pesticides. Environ Sei Technol 34:4923–4930

    CAS  Google Scholar 

  • McMahon PB, Chapelle FH, Jagueki MLC (1992) Atrazine mineralization potential of alluvial-aquifer sediments under aerobic conditions. Environ Sei Technol 26:1556–1559

    CAS  Google Scholar 

  • Michel FC Jr, Reddy CA, Forney L J (1995) Microbial degradation and humification of the lawn care pesticide 2,4-dichlorophenoxyacetic acid during the composting of yard trimmings. Appl Environ Microbiol 61:2566–2571

    CAS  Google Scholar 

  • Middeldorp PJM, Jaspers M, Zehnder AJB, Schraa G (1998) Biotransformation of a-, β-, Îł- and δ-hexachlorocyclohexane under methanogenic conditions. Environ Sei Technol 30:2345–2349

    Google Scholar 

  • Mohapatra S, Awasthi MD (1997) Enhancement of Carbofuran degradation by soil enrichment cultures, bacterial cultures and by synergistic, interaction among bacterial cultures. Pestic Sei 49:164–168

    CAS  Google Scholar 

  • Morgan P, Lewis ST, Watkinson RJ (1991) Comparison of abilities of white-rot fungi to mineralize selected xenobiotic compounds. Appl Microbiol Biotechnol 34:693–696

    CAS  Google Scholar 

  • Mougin C, Laugero C, Asther C, ChapLaln V (1997) Biotransformation of s-triazine herbicides and related degradation products in liquid cultures by white rot fungus Phanerochaete chrysosporium. Pestic Sei 49:169–177

    CAS  Google Scholar 

  • MĂĽller MD, Buser H-R (1997) Conversion reactions of various phenoxyalkanoic acid herbicides in soil. 1. Enantiomerization and enantioselective degradation of the chiral 2-phenoxypropionic acid herbicides. Environ Sei Technol 31:1953–1959

    Google Scholar 

  • Nagata Y, Nariya T, Ohtomo R, Fukuda M, Yano K, Takagi M (1993) Cloning and sequencing of a dehalogenase gene encoding an enzyme with hydrolase activity involved in the degradation of 7-hexachlorocyclohexane in Pseudomonas paueimo-bilis. J Bacteriol 175:6403–6410

    CAS  Google Scholar 

  • Nadeau LJ, Fu-Min M, Breen A, Sayler GS (1994) Aerobic degradation of (1,1,1-trichloro-2,2-bis (4-chlorophenyl ethane)-DDT by Alcaligens eutrophus A5. Appl Environ Microbiol 60:51–55

    CAS  Google Scholar 

  • Newby DT, Gentry TJ, Pepper IL (2000) Comparison of 2,4-dichlorophenoxyacetic acid degradation and plasmid transfer in soil resulting from bioaugmentation with two different pJP4 donors. Appl Environ Microbiol 66:3399–3407

    CAS  Google Scholar 

  • Nickel K, Suter MJ-F, Kohler H-PE (1997) Involvement of two α-ketoglutarate-dependent dioxygenases in enantioselective degradation of (R)- and (S) mecoprop by Sphingomonas herbicidivorans MH. J Bacteriol 179:6674–6679

    CAS  Google Scholar 

  • Ohisa M, Yamaguchi M, Kurihara N (1980) Lindane degradation by cell free extract of Clostridium rectum. Arch Microbiol 125:221–226

    CAS  Google Scholar 

  • Park J-H, Feng Y, Ji P, Voice TC, Boyd SA (2003) Asessment of bioavailability of soil-sorbed atrazine. Appl Environ Microbiol 69:3288–3298

    CAS  Google Scholar 

  • Paszczynski A, Crawford RL (1995) Potential for bioremediation of xenobiotic compounds by the white-rot fungus chrysosporium. Biotechnol Prog 11: 368–379

    CAS  Google Scholar 

  • Pepper IL, Gentry TJ, Newby DT, Roane TM, Josephson KL (2002) The role of cell bioaugmentation and gene bioaugmentation in the remediation of co-contaminated soils. Environ Health Perspect 110:943–946

    CAS  Google Scholar 

  • Piutti S, Semon E, Landry D, Hartmann A, Dousset S, Lichtfouse E, Topp E, Soulas G, Martin-Laurent F (2003) Isolation and characterisation of Nocardioides sp. SP 12, an atrazine-degrading bacterial strain possessing the gene trzN from bulk- and maize rhizosphere soil. FEMS Microbiol Lett 221:111–117

    CAS  Google Scholar 

  • Ralebitso TK, Senior E, van Verseveld HW (2002) Microbial aspects of atrazine degradation in natural environments. Biodegradation 13:11–19

    Google Scholar 

  • Rani NL, Lalitha Kumari D (1994) Degradation of methyl parathion by Pseudomonas putida. Can J Microbiol 4:1000–1004

    Google Scholar 

  • Raushel FM (2002) Bacterial detoxification of organophosphate nerve agents. Cur r Opin Microbiol 5:288–295

    CAS  Google Scholar 

  • Richins R, Kaneva I, Mulchandani A, Chen W (1997) Biodegradation of organophos-phorus pesticides using surface expressed organophosphorus hydrolase. Nature Biotechnol 15:984–987

    CAS  Google Scholar 

  • Roane TM, Josephson KL, Pepper IL (2001) Dual bioaugmentation strategy to enhance remediation of cocontaminated soil. Appl Environ Microbiol 67:3208–3215

    CAS  Google Scholar 

  • Robertson BK, Alexander M (1994) Growth linked and cometabolic biodegration: Possible reason for occurrence or absence of accelerated pesticide biodegradation. Pestic Sei 41:311–318

    CAS  Google Scholar 

  • Romine MF, Brockman FJ (1996) Recruitment and expression of toluene/trichloroeth-ylene biodĂ©gradation genes in bacteria native to deep-subsurface sediments. Appl Environ Microbiol 62:2647–2650

    CAS  Google Scholar 

  • Rouchaud J, Ncus O, Callens D, Bulcke R (1997) Enhanced biodegradation of prosul-forcab herbicide in barley crop. Bull Environ Contam Toxicol 58:752–757

    CAS  Google Scholar 

  • Rousseaux S, Hartmann A, Lagacherie B, Piutti S, Andreux F, Soulas G (2003) Inoculation of an atrazine-degrading strain, Chelatobacter heintzii Citl, in four different soils: effects of different inoculum densities. Chemosphere 51:569–576

    CAS  Google Scholar 

  • Sahu SK, Patnaik KK, Bhuyan S, Sethunathan N (1993) Degradation of soil applied isomers of hexachlorocyclohexane by a Pseudomonas sp. Soil Biol Biochem 25:387–390

    CAS  Google Scholar 

  • Sandmann ERIC, Loos MA, van Dyk LP (1988) The microbial degradation of 2,4-dichlorophenoxyacetic acid in soil. Rev Environ Contamin Toxicol 101:1–53

    CAS  Google Scholar 

  • Sayler GS, Ripp S (2000) Field application of genetically engineered microorganisms for bioremediation processes. Curr Opin Biotechnol 11:286–289

    CAS  Google Scholar 

  • Shah M, Barr DP, Chung N, Aust SD (1992) Use of white rot fungi in the degradation of environmental chemicals. Toxicol Lett 64/65:493–501

    Google Scholar 

  • Shao ZQ, Seffens W, Mulbry W, Behki RM (1995) Cloning and expression of s-triazine hydrolase gene (trzA) from Rhodococcus corallinus and development of Rho do coccus recombinant strains capable of dealkylating and dechlorinating the herbicide atrazine. J Bacteriol 177:5748–5751

    CAS  Google Scholar 

  • Singh BK, Kuhad RC (1999) Biodegradation of pesticide lindane by Trametes hirsutus. Lett Appl Microbiol 28:238–241

    CAS  Google Scholar 

  • Singh BK, Kuhad RC, Singh A, Lai R, Tripathi KK (1999) Biochemical and molecular basis of pesticide degradation by microorganisms. Crit Rev Biotechnol 19:197–225

    CAS  Google Scholar 

  • Singh BK, Kuhad RC, Singh A, Tripathi KK, Ghosh PK (2000) Microbial degradation of pesticide lindane (7-hexachlorocyclohexane). Adv Appl Microbiol 47:269–298

    CAS  Google Scholar 

  • Strong LC, McTavish H, Sadowsky MJ, Wackett LP (2000) Field-scale remediation of atrazine-contaminated soil using recombinant Escherichia coli expressing atrazine chlorohydrolase. Environ Microbiol 2:91–98

    CAS  Google Scholar 

  • Struthers JK, Jayachandran K, Moorman TB (1998) Biodegradation of atrazine by Agrobacterium radiobacter J 14a and use of this strain in bioremediation of contaminated soil. Appl Environ Microbiol 64:3368–3375

    CAS  Google Scholar 

  • Sutherland TD, Horne I, Lacye MJ, Harcourt RL, Russell RJ, Oakeshott JG (2000) Enrichment of an endosulfan-degrading mixed bacterial culture. Appl Environ Microbiol 66:2822–2828

    CAS  Google Scholar 

  • Tett VA, Willets AJ, Lappin-Scott HM (1997) Biodegradation of the chlorophenoxy herbicide (R)-(+)-mecoprop by Alcaligenes denitrificans. Biodegradation 8:43–52

    CAS  Google Scholar 

  • Tomasi I, Artaud I, Bertheau Y, Mansuy D (1995) Metabolism of polychlorinated phenols by Pseudomonas cepacia AC 1100. Determination of the first two steps and specific inhibitory effect of methimazole. J Bacteriol 177:307–311

    CAS  Google Scholar 

  • Topp E (2001) A comparison of three atrazine-degrading bacteria for soil bioremediation. Biol Fert Soils 33:529–534

    CAS  Google Scholar 

  • van der Heyden V, Debongnie P, Pussemier L (1997) Accelerated degradation and mineralization of atrazine in surface and sub-surface soil materials. Pestic Sei 49: 237–241

    Google Scholar 

  • van Eekert MHA, van Ras NJP, Mentink GH, Rijnaarts HBM, Stams AJM, Field JA, Schraa G (1998) Anaerobic transformation of β-hexachlorocyclohexane by methanogenic granular sludge and soil microfora. Environ Sei Technol 32:3299–3304

    Google Scholar 

  • Van Zwieten L, Ayres MR, Morris SG (2003) Influence of arsenic co-contamination on DDT breakdown and microbial activity. Environ Pollut 124:331–339

    Google Scholar 

  • Wackett LP, Sadowsky MJ, Martinez B, Shapir N (2002) Biodegradtion of atrazine and related s-triazine compounds: from enzymes to field studies. Appl Microbiol Biotechnol 58:39–45

    CAS  Google Scholar 

  • Walker AW, Keasling JD (2002) Metabolic engineering of Pseudomonas putida for the utilization of parathion as a carbon and energy source. Biotechnol Bioeng 78:715–721

    CAS  Google Scholar 

  • Westendorf A, Mueller RH, Babel W (2003) Purification and characterization of the enantiospecific dioxygenase from Deftia acidovorans MCI initiating the degradation of phenoxypropionate and phenoxyacetate herbicides. Acta Biotechnol 23:3–17

    CAS  Google Scholar 

  • Xu B, Wild JR, Kenerle CM (1996) Enhanced expression of a bacterial gene for pesticide degradation in a common soil fungus. J Ferment Bioeng 81:473–481

    CAS  Google Scholar 

  • Xun LY (1996) Purification and characterization of chlorophenol 4-monooxygenase from Burkholderia cepacia AC1100. J Bacteriol 178:2645–2649

    CAS  Google Scholar 

  • Xun L, Wagon K (1995) Purification and properties of component B of 2,4,5-trichlorophenoxyacetic acid oxygenase from Pseudomonas cepacia AC1100. Appl Environ Microbiol 61:3499–3502

    CAS  Google Scholar 

  • Yadav JS, Reddy CA (1993) Mineralization of 2,4-dichlorophenoxyacetic acid (2,4-D) and mixtures of 2,4-D and 2,4,5-trichlorophenoxyacetic acid by Phanerochaete chrysosporium. Appl Environ Microbiol 59:2904–2908

    CAS  Google Scholar 

  • You G, Sayles GD, Kupferle MJ, Kim IS, Bishop PL (1996) Anaerbic DDT biotransformation: enhancement by application of surfactants and low oxidation reduction potential. Chemosphere 32:2269–2284

    CAS  Google Scholar 

  • Zipper C, Bunk M, Zehnder AJB, Kohler H-PE (1998) Enantioselective uptake and degradation of the chiral herbicide dichlorprop [(RS)-2-(2,4-dichlorophenoxy) propanoic acid] by Sphingomonas herbicidovorans MH. J Bacteriol 180:3368–3374

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kuhad, R.C., Johri, A.K., Singh, A., Ward, O.P. (2004). Bioremediation of Pesticide-Contaminated Soils. In: Singh, A., Ward, O.P. (eds) Applied Bioremediation and Phytoremediation. Soil Biology, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05794-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05794-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05908-7

  • Online ISBN: 978-3-662-05794-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics