Skip to main content

Watching the Daisies Grow: Turing and Fibonacci Phyllotaxis

  • Chapter
Alan Turing: Life and Legacy of a Great Thinker

Summary

Turing’s seminal 1952 paper on morphogenesis is widely known. Less well known is that he spent the last few years of his life further developing his morphogenetic theory and using the new computer to generate solutions to reaction-diffusion systems. Among other things, he claimed at one point to be able to explain the phenomenon of “Fibonacci phyllotaxis”: the appearance of Fibonacci numbers in the structures of plants. He never published this work, but did leave a nearly complete manuscript on morphogenesis and lattice phyllotaxis, together with more fragmentary notes on Fibonacci phyllotaxis. I discuss evidence that he developed a number of key ideas close to modern thinking, and tantalising hints that he came very close to a mathematical explanation of how the “daisy grows” into these patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Adler, D. Barabe, and R. V. Jean. A history of the study of phyllotaxis. Annals of Botany, 80:231–244, 1997.

    Article  Google Scholar 

  2. W. Allaerts. Fifty years after Alan M. Turing. An extraordinary theory of morphogenesis. Belgian Journal of Zoology, 133(1) :3–14, 1972.

    Google Scholar 

  3. P. Atela, C. Gole, and S. Hotton. A dynamical system for plant pattern formation: a rigorous analysis. Journal of Nonlinear Science, 12:641–676, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  4. J. M. Bennett. Ferranti recollections (1950–1965). IEEE Annals of the History of Computing, 18(3):65, 1996.

    Google Scholar 

  5. A. Braun. Vergleichende Untersuchung über die Ordnung der Schuppen an den Tannenzapfen als Einleitung zur Untersuchung der Blattstellungen Überhaupt. Verhandlung der Kaiserlichen Leopoldinsche-Carolinsched Akademie der Naturforschung, 15:195–402, 1831.

    Google Scholar 

  6. L. Bravais and A. Bravais. Essai sur la disposition des feuilles curviseriees. Annales des Sciences Naturelles Botanique, 7 and 8:42–110; 193–221; 11–42, 1837.

    Google Scholar 

  7. A. H. Church. On the Relation of Phyllotaxis to Mechanical Laws. Williams and Norgate, London, 1904.

    Google Scholar 

  8. H. S. M. Coxeter. The role of intermediate convergents in Tait’s explanation for phyllotaxis. Journal of Algebra, 20:167–172, 1972.

    Article  MathSciNet  MATH  Google Scholar 

  9. S. Douady and Y. Couder. Phyllotaxis as a dynamical self organizing process (part I, II, III). Journal of Theoretical Biology, 178:255–274; 275–294; 295–312, 1996.

    Article  Google Scholar 

  10. A. Hodges. Alan Turing: The Enigma. Vintage, London, 1992.

    Google Scholar 

  11. R. V. Jean. Phyllotaxis: a systematic study in plant morphogenesis. Cambridge University Press, Cambridge, UK, 1994.

    Book  Google Scholar 

  12. R. V. Jean and D. Barabe. Symmetry in Plants. World Scientific, 1998.

    MATH  Google Scholar 

  13. E. Fox Keller. Making Sense of Life. Harvard University Press, 2002.

    Google Scholar 

  14. A. N. Kolmogorov, I. G. Petrovsky, and N. S. Piskunov. Etude de l’equation de la diffusion avec croissance de la quantite de matiere et son application a un Problème biologique. Bulletin Universite d’Etat a Moscou (Bjul. Moskowskogo Gos. Univ.), Serie Internationale, Sect. A 1:1–26, 1937.

    Google Scholar 

  15. M. Kunz and F. Rothen. Phyllotaxis or the properties of spiral lattices III. An algebraic model of morphogenesis. J Phys I France, 2:2131–2172, 1992.

    Article  Google Scholar 

  16. L. S. Levitov. Energetic approach to phyllotaxis. Europhysics Letters, 14(6):535–539, 1991.

    Article  Google Scholar 

  17. H. Meinhardt. Models of biological pattern formation. Academic Press, London, UK, 1982.

    Google Scholar 

  18. G. J. Mitchison. Phyllotaxis and the Fibonacci series. Science, 196:270–275, 1977.

    Article  Google Scholar 

  19. J. Murray. Mathematical Biology. Springer-Verlag, Berlin Heidelberg New York, 1993.

    Book  MATH  Google Scholar 

  20. V. Nanjundiah. Alan Turing and ‘the chemical basis of morphogenesis’. In T. Sekimura, editor, Morphogenesis and Pattern Formation in Biological Systems. Springer-Verlag, Tokyo, Japan, 2003.

    Google Scholar 

  21. M. H. A. Newman. Alan Mathison Turing. Biographical Memoirs of the Royal Society, 1:253–263, 1955.

    Article  Google Scholar 

  22. N. Rashevsky. Advances and Application of Mathematical Biology. University of Chicago Press, Chicago, 1940.

    Google Scholar 

  23. B. Richards. The Manchester Mark I: The Turing-Richards Era. In Conference: “Computers in Europe. Past, Present and Future”, Kiev, October 5–9 1998. http://www.icfcst.kiev.ua/SYMPOSIUM/Proceedings/Richards.pdf.

    Google Scholar 

  24. F. J. Richards. The Geometry of Phyllotaxis and its Origin. Symposium of the Society for Experimental Biology, 2:217–245, 1948.

    Google Scholar 

  25. P. T. Saunders, editor. Collected Works of A. M. Turing: Morphogenesis. North-Holland, Amsterdam, 1992.

    Google Scholar 

  26. C. F. Schimper. Beschreibung des Symphytum Zeyheri und seiner zwei deutschen Verwandten der S. buoborum Schimper und S. tuberosum. Geiger’s Magazin für Pharmacie, 29:1–92, 1831.

    Google Scholar 

  27. J. Swinton. Web-site: Turing and morphogenesis. http://www.swintons.net/jonathan/turing.htm, 2003.

  28. D. W. Thompson. On Growth and Form. Cambridge University Press, Cambridge, UK, 1961.

    Google Scholar 

  29. A. M. Turing. The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society of London, B 237:37–72, 1952.

    Article  Google Scholar 

  30. A. M. Turing. The morphogen theory of phyllotaxis. In Saunders [25].

    Google Scholar 

  31. G. van Iterson. Mathematische und Microscopisch-Anatomische Studien über Blattsteilungen, nebst Betraschung über den Schalebau der Milionen. Gustav-Fischer Verlag, Jena, 1907.

    Google Scholar 

  32. A. H. Veen and A. Lindenmayer. Diffusion mechanism for phyllotaxy. Plant Physiology, 60:127–139, 1977.

    Article  Google Scholar 

  33. C. H. Waddington. Towards a theoretical biology, An IUBS symposium, Villa Serbelloni, 1968, Volume 3. Drafts. Aldine, Chicago, 1970.

    Google Scholar 

  34. C. W. Wardlaw. A commentary on Turing’s diffusion-reaction theory of morphogenesis. New Phytologist, 52:40–47, 1953.

    Article  Google Scholar 

  35. C. W. Wardlaw. Evidence relating to the diffusion-reaction theory of morphogenesis. New Phytologist, 54:39–49, 1954.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Swinton, J. (2004). Watching the Daisies Grow: Turing and Fibonacci Phyllotaxis. In: Teuscher, C. (eds) Alan Turing: Life and Legacy of a Great Thinker. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05642-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05642-4_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05744-1

  • Online ISBN: 978-3-662-05642-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics