Skip to main content

Theoretical Calculations of Electrical Properties of Nanoscale Systems Under the Influence of Electric Fields and Currents

  • Chapter
Chemistry of Nanomolecular Systems

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 70))

  • 234 Accesses

Summary

Recently, extensive experimental attempts to clarify the properties of various nanomolecular systems have been performed. Although many interesting results have already been reported and more are expected in the near future, interpretation of the results of such experiments is not necessarily straightforward, because of the strong interaction between the nanomolecular systems and the experimental probe. In this situation, reliable theoretical calculations are useful for interpreting experimental results, exploring novel properties of nanomolecular systems, and deriving guiding principles for designing nanomolecular systems so that they will be optimal for given purposes.

On the other hand, nanomolecular systems present a challenge to theoretical calculations, because conventional methods, which are powerful for examining the properties of bulk crystals and isolated molecules, are often insufficient for nanomolecular systems. First, it is often desirable to consider semi-infinite electrodes explicitly instead of representing them by finite clusters or thin slabs. Second, external fields often play an essential role in measurements of properties of nanomolecular systems, but the conventional methods have serious difficulties in treating their effects.

In this chapter, keeping the above in mind, we review recent theoretical approaches to examining the properties of nanomolecular systems, focusing on those which take account of semi-infinite electrodes and external electric fields explicitly. In particular, we discuss the electrical properties of systems under the influence of electric fields and currents, because these properties are very important in designing molecular electronic devices. After summarizing the problems of the conventional methods in Sect. 10.1, methods developed to examine the electrical properties of nanoscale systems are reviewed in Sect. 10.2. Recent applications of such methods to simple nanoscale systems without organic molecules are then described in Sect. 10.3. To examine such systems is useful, because some of the essential features of the properties of nanomolecular systems are also seen in them. Next, recent progress in theoretical analysis of the electrical properties of nanomolecular systems is reviewed in Sect. 10.4, followed by some concluding remarks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Nakaoka, K. Tada, S. Watanabe, H. Fujita, K. Watanabe: Phys. Rev. Lett. 86, 540 (2001)

    Article  CAS  Google Scholar 

  2. J.R. Chelikowsky, N. Troullier, Y. Saad: Phys. Rev. Lett. 72, 1240 (1994)

    Article  CAS  Google Scholar 

  3. T. Hoshi, M. Arai, T. Fujiwara: Phys. Rev. B 52, R5459 (1995)

    Article  CAS  Google Scholar 

  4. J. Tersoff, D.R. Hamann: Phys. Rev. B 31, 805 (1985)

    Article  CAS  Google Scholar 

  5. M. Tsukada, N. Shima: J. Phys. Soc. Jpn. 56, 2875 (1987)

    Article  Google Scholar 

  6. N.D. Lang: Phys. Rev. B 52, 5335 (1995)

    Article  CAS  Google Scholar 

  7. S. Datta: Electronic Transport in Mesoscopic Systems ( Cambridge University Press, Cambridge 1995 )

    Google Scholar 

  8. M.B. Nardelli, J.-L. Fattebert, J. Bernholc: Phys. Rev. B 64, 245423 (2001)

    Google Scholar 

  9. S.N. Yaliraki, A.E. Roitberg, C. Gonzales, V. Mujica, M.A. Ratner: J. Chem. Phys. 111, 6997 (1999)

    Article  CAS  Google Scholar 

  10. B.V. Noumerov: Mon. Not. R. Astron. Soc. 84, 592 (1924)

    Google Scholar 

  11. K. Hirose, M. Tsukada: Phys. Rev. B 51, 5278 (1995)

    Article  CAS  Google Scholar 

  12. Y. Gohda, Y. Nakamura, K. Watanabe, S. Watanabe: Phys. Rev. Lett. 85, 1750 (2000)

    Article  CAS  Google Scholar 

  13. H. Choi, J. Ihm: Phys. Rev. B 59, 2267 (1999)

    Article  Google Scholar 

  14. C. Roland, B. Larade, J. Taylor, H. Guo: Phys. Rev. B 65, 041401 (2002)

    Google Scholar 

  15. M. Di Ventra, S.T. Pantelides: Phys. Rev. B 61, 16207 (2000)

    Article  Google Scholar 

  16. R.H. Fowler, L.W. Nordheim: Proc. R. Soc. London A 119, 173 (1928)

    Article  CAS  Google Scholar 

  17. E.L. Murphy, R.H. Good: Phys. Rev. 102, 1464 (1956)

    Article  CAS  Google Scholar 

  18. Y. Gohda, S. Watanabe: Phys. Rev. Lett. 87, 177601 (2001); Surf. Sci. 516, 265 (2002)

    CAS  Google Scholar 

  19. V.T. Binh, S.T. Purcell, N. Garcia, J. Doglioni: Phys. Rev. Lett. 69, 2527 (1992)

    Article  Google Scholar 

  20. M.L. Yu, N.D. Lang, B.W. Hussey, T.H.P. Chang, W.A. Mackie: Phys. Rev. Lett. 77, 1636 (1996)

    Article  CAS  Google Scholar 

  21. J.I. Pascual, J. Méndez, J. Gómez-Herrero, A.M. Bare), N. Garcia, V.T. Binh: Phys. Rev. Lett. 71, 1852 (1993)

    Article  CAS  Google Scholar 

  22. H. Ohnishi, Y. Kondo, K. Takayanagi: Nature 395, 780 (1998)

    Article  CAS  Google Scholar 

  23. S. Furuya, Y. Gohda, N. Sasaki, S. Watanabe: Jpn. J. Appl. Phys. 41, L989 (2002)

    Article  CAS  Google Scholar 

  24. N. Kobayashi, M. Aono, M. Tsukada: Phys. Rev. B 64, 121402 (R) (2001)

    Google Scholar 

  25. N. Kobayashi, M. Brandbyge, M. Tsukada: Jpn. J. Appl. Phys. 38, 336 (1999)

    Article  CAS  Google Scholar 

  26. N.D. Lang: Phys. Rev. Lett. 79, 1357 (1997)

    Article  CAS  Google Scholar 

  27. N. Kobayashi, M. Brandbyge, M. Tsukada: Phys. Rev. B 62, 8430 (2000)

    Article  CAS  Google Scholar 

  28. N.D. Lang, P. Avouris: Phys. Rev. Lett. 84, 358 (2000)

    Article  CAS  Google Scholar 

  29. N.D. Lang, P. Avouris: Phys. Rev. Lett. 81, 3515 (1999)

    Article  Google Scholar 

  30. N.D. Lang, P. Avouris: Phys. Rev. B 62, 7325 (2000)

    Article  CAS  Google Scholar 

  31. H.-S. Sim, H.-W. Lee, K.J. Chang: Phys. Rev. Lett. 87, 096803 (2001)

    Google Scholar 

  32. L. Esaki, L.L. Chang: Phys. Rev. Lett. 33, 495 (1974)

    Article  CAS  Google Scholar 

  33. M. Brandbyge, N. Kobayashi, M. Tsukada: Phys. Rev. B 60, 17064 (1999)

    Article  CAS  Google Scholar 

  34. C. Joachim, J.K. Gimzewski, A. Aviram: Nature 408, 541 (2000)

    Article  CAS  Google Scholar 

  35. A. Aviram, M. Ratner: Chem. Phys. Lett. 29, 277 (1974)

    Article  CAS  Google Scholar 

  36. M. Magoga, C. Joachim: Phys. Rev. B 56, 4722 (1997)

    Article  CAS  Google Scholar 

  37. M. Magoga, C. Joachim: Phys. Rev. B 59, 16011 (1999)

    Article  CAS  Google Scholar 

  38. S. Nakanishi, M. Tsukada: Jpn. J. Appl. Phys. 37, L1400 (1998)

    Article  CAS  Google Scholar 

  39. S. Nakanishi, M. Tsukada: Phys. Rev. Lett. 87, 126801 (2001)

    Google Scholar 

  40. V. Mujica, M. Kemp, A. Roitberg, M. Ratner: J. Chem. Phys. 104, 7296 (1996)

    Article  CAS  Google Scholar 

  41. E.G. Emberly, G. Kirczenow: Phys. Rev. B 62, 10451 (2000)

    Article  CAS  Google Scholar 

  42. M. Di Ventra, S.T. Panterides, N.D. Lang: Phys. Rev. Lett. 84, 979 (2000)

    Article  Google Scholar 

  43. M.A. Reed, C. Zhou, C.J. Muller, T.P. Burgin, J.M. Tour: Science 278, 252 (1997)

    Article  CAS  Google Scholar 

  44. M. Di Ventra, S.T. Panterides, N.D. Lang: Appl. Phys. Lett. 76, 3448 (2000)

    Article  Google Scholar 

  45. M. Di Ventra, S.T. Panterides, N.D. Lang: Phys. Rev. Lett. 88, 046801 (2002)

    Google Scholar 

  46. E.G. Emberly, G. Kirczenow: Phys. Rev. B 64, 235412 (2001)

    Google Scholar 

  47. M. Di Ventra, S.T. Panterides, N.D. Lang: Phys. Rev. Lett. 86, 288 (2001)

    Article  Google Scholar 

  48. N.D. Lang, P. Avouris: Phys. Rev. B 64, 125323 (2001)

    Google Scholar 

  49. E.G. Emberly, G. Kirczenow: Phys. Rev. B 61, 5740 (2000)

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Watanabe, S. (2003). Theoretical Calculations of Electrical Properties of Nanoscale Systems Under the Influence of Electric Fields and Currents. In: Nakamura, T., Matsumoto, T., Tada, H., Sugiura, Ki. (eds) Chemistry of Nanomolecular Systems. Springer Series in Chemical Physics, vol 70. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05250-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05250-1_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07910-8

  • Online ISBN: 978-3-662-05250-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics