Skip to main content

Atomic Manipulations and Nanostructure Formation

  • Chapter
Surface Science

Part of the book series: Advanced Texts in Physics ((ADTP))

  • 3924 Accesses

Abstract

Recent progress in material science (and, in particular, in surface science) provides an opportunity for the fabrication of various artificial structures of nanometer size. The main approaches used for such fabrications are atomic manipulations (i.e., building up the structure atom by atom) and self-organization (i.e., spontaneous formation of many structures at once, as a result of certain processes). The growth process and the grown nanostructures themselves present great interest both for science and technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ph. Buffat, J-P. Borei: Size Effect on the Melting Temperature of Gold Particles. Phys. Rev. A 13, 2287 (1976)

    Article  CAS  Google Scholar 

  2. R.P. Feynman: There’s Plenty of Room at the Bottom. Engineering and Science (California Institute of Technology) 23, 22 (1960). Reprinted in: Journal of Microelectromechanical Systems 1, 60 (1992) (see also http://www.its.caltech.edu/~feynman/plenty.html)

    Google Scholar 

  3. P. Avouris: Manipulation of Matter at the Atomic and Molecular Levels. Acc. Chem. Res. 28, 95 (1995)

    Article  CAS  Google Scholar 

  4. D.M. Eigler, E.K. Schweizer: Positioning Single Atoms with a Scanning Tunnelling Microscope. Nature 344, 524 (1990)

    Article  CAS  Google Scholar 

  5. M.F. Crommie, C.P. Lutz, D.M. Eigler: Imaging Standing Waves in a Two-Dimensional Electron Gas. Nature 363, 524 (1993). (http://www.almaden.ibm.com/vis/stm/corral.html#stm16)

    Article  CAS  Google Scholar 

  6. J.A. Stroscio, D.M. Eigler: Atomic and Molecular Manipilation with Scanning Tunneling Microscope. Science 254, 1319 (1991)

    Article  CAS  Google Scholar 

  7. A.A. Saranin, T. Numata, O. Kubo, H. Tani, M. Katayama, V.G. Lifshits, K. Oura: STM Tip-Induced Diffusion of In Atoms on the MATH-In Surface. Phys. Rev. B 56, 7449 (1997)

    Article  CAS  Google Scholar 

  8. D.M. Eigler, C.P. Lutz, W.E. Rudge: An Atomic Switch Realized with the Scanning Tunneling Microscope. Nature 352, 600 (1991)

    Article  CAS  Google Scholar 

  9. M. Aono, A. Kobayashi, F. Grey, H. Uchida, D.-H. Huang: Tip-Sample Interactions in the Scanning Tunneling Microscope for Atomic-Scale Structure Fabrication. Japan J. Appl. Phys. 32, 1470 (1993)

    CAS  Google Scholar 

  10. T. Hitosugi, T. Hashizume, S. Heike, Y. Wada, S. Watanabe, T. Hasegawa, K. Kitazawa: Scanning Tunneling Spectroscopy of Dangling-Bond Wires Fabricated on the Si(100)-2×1-H Surface. Appl. Phys. A 66, S695 (1998)

    Article  CAS  Google Scholar 

  11. B. Voigtländer: Fundamental Processes in Si/Si and Ge/Si Epitaxy Studied by Scanning Tunneling Microscopy During Growth. Surf. Sci. Rep. 43, 127 (2001)

    Article  Google Scholar 

  12. R.S. Williams, G. Medeiros-Ribeiro, T.I. Kamins, D.A.A. Ohlberg: Chemical Thermodynamics of the Size and Shape of Strained Ge Nanocrystals Grown on Si(001). Acc. Chem. Res. 32, 425 (1999)

    Article  CAS  Google Scholar 

  13. J. Tersoff, C. Teichert, M.G. Lagally: Self-Organization in Growth of Quantum Dot Superlattices. Phys. Rev. Lett. 76, 1675 (1996)

    Article  CAS  Google Scholar 

  14. K. Oura, V.G. Lifshits, A.A. Saranin, A.V. Zotov, M. Katayama: Hydrogen Interaction with Clean and Modified Silicon Surfaces. Surf. Sci. Rep. 35, 1 (1999)

    Article  CAS  Google Scholar 

  15. V.G. Kotlyar, A.V. Zotov, A.A. Saranin, T.V. Kasyanova, M.A. Cherevik, I.V. Pisarenko, V.G. Lifshits: Formation of the ordered array of Al magic clusters on Si(111)7×7. Phys. Rev. B 66, 165401 (2002)

    Article  Google Scholar 

  16. L. Vitali, M.G. Ramsey, F.P. Netzer: Nanodot Formation on the Si(111)-(7×7) Surface by Adatom Trapping. Phys. Rev. Lett. 83, 316 (1999)

    Article  CAS  Google Scholar 

  17. Y. Chen, D.A.A. Ohlberg, R.S. Williams: Nanowires of Four Epitaxial Hexagonal Silicides Grown on Si(001). J. Appl. Phys. 91, 3213 (2002)

    Article  CAS  Google Scholar 

  18. Y. Chen, D.A.A. Ohlberg, G. Medeiros-Ribeiro, Y.A. Chang, R.S. Williams: Self-Assembled Growth of Epitaxial Erbium Disilicide Nanowires on Silicon (001). Appl. Phys. Lett. 76, 4004 (2000)

    Article  CAS  Google Scholar 

  19. H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley: C 60 : Buckminsterfullerene. Nature 318, 162 (1985)

    Article  CAS  Google Scholar 

  20. M.J. Butcher, J.W. Nolan, M.R.C. Hunt, P.H. Beton, L. Dunsch, P. Kuran, P. Georgi, T.J.S. Dennis: Orientaionally Ordered Island Growth of Higher Fullerenes on MATH. Phys. Rev. B 64, 195401 (2001)

    Article  Google Scholar 

  21. S. Iijima: Helical Microtubules of Graphitic Carbon. Nature 354, 56 (1991)

    Article  CAS  Google Scholar 

  22. S. Iijima, T. Ichihashi: Single-Shell Carbon Nanotubes of 1-nm Diameter. Nature 363, 603 (1993)

    Article  CAS  Google Scholar 

  23. D.S. Bethune, C.H. Kiang, M.S. de Vries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers: Cobalt-Catalysed Growth of Carbon Nanotubes with Single-Atomic-Layer Walls. Nature 363, 605 (1993)

    Article  CAS  Google Scholar 

  24. M.S. Dresselhaus: New Trics with Nanotubes. Nature 391, 19 (1998)

    Article  CAS  Google Scholar 

  25. J.-L. Huang P. Kim, T.W. Odom, CM. Lieber: Electronic Density of States of Atomically Resolved Single-Walled Carbon Nanotubes: Van Hove Singularities and End States. Phys. Rev. Lett. 82, 1225 (1999)

    Article  Google Scholar 

Further Reading

  1. J.A. Stroscio, D.M. Eigler: Atomic and Molecular Manipulation with Scanning Tunneling Microscope, Science 254, 1319–1326 (1991)

    Article  CAS  Google Scholar 

  2. P. Avouris: Manipulation of Matter at the Atomic and Molecular Levels, Acc. Chem. Res. 28, 95–102 (1995)

    Article  CAS  Google Scholar 

  3. T. Ogino, H. Hibino, Y. Homma, Y. Kobayashi, K. Prabhakaran, K. Sumitomo, H. Orni: Fabrication and Integration of Nanostructures on Si Surfaces, Acc. Chem. Res. 32, 447–454 (1999)

    Article  CAS  Google Scholar 

  4. H.S. Nalwa (Ed.): Nanostructured Materials and Nanotechnology (Academic Press, New York 2002)

    Google Scholar 

  5. R. Saito, G. Dresselhaus, M.S. Dresselhaus: Physical Properties of Carbon Nanotubes (Imperial College Press, London 1998)

    Book  Google Scholar 

  6. S.S. Sinnott, R. Andrews: Carbon Nanotubes: Synthesis, Properties, and Applications. Crit. Rev. Solid State Mater. Sci. 26, 145–249 (2001)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Oura, K., Katayama, M., Zotov, A.V., Lifshits, V.G., Saranin, A.A. (2003). Atomic Manipulations and Nanostructure Formation. In: Surface Science. Advanced Texts in Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05179-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05179-5_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05606-2

  • Online ISBN: 978-3-662-05179-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics