Skip to main content

Growth of Thin Films

  • Chapter
Surface Science

Part of the book series: Advanced Texts in Physics ((ADTP))

Abstract

When the adsorbate coverage exceeds the monolayer range, one speaks about thin film growth. The oriented growth of a crystalline film on a single-crystal substrate is referred to as epitaxy, which, in turn, is subdivided into homoepitaxy (when both film and substrate are of the same material) and heteroepitaxy (when film and substrate are different). The film growth is controlled by the interplay of thermodynamics and kinetics. The general trends in film growth are understood within the thermodynamic approach in terms of the relative surface and interface energies. On the other hand, film growth is a non-equilibrium kinetic process, in which the rate-limiting steps affect the net growth mode. In this chapter, the surface phenomena involved in thin film growth and their effect on the growth mode, as well as on the structure and morphology of the grown films, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.G. Amar, F. Family, P.-M. Lam: Dinamic Scaling of the Island -Size Distribution and Percolation in a Model of Submonolayer Molecular-Beam Epitaxy. Phys. Rev. B 50, 8781 (1994)

    Article  CAS  Google Scholar 

  2. J.A. Venables, G.D.T. Spiller, M. Hanbücken: Nucleation and Growth of Thin Films. Rep. Prog. Phys. 47, 399 (1984)

    Article  Google Scholar 

  3. B. Müller, L. Nedelmann, B. Fischer, H. Brune, K. Kern: Initial Stages of Cu Epitaxy on Ni(100): Postnucleation and a Well-Defined Transition in Critical Island Size. Phys. Rev. B 54, 17858 (1996)

    Article  Google Scholar 

  4. T.A. Witten Jr., L.M. Sander: Diffusion-Limited Agregation, a Kinetic Critical Phenomenon. Phys. Rev. Lett. 47, 1400 (1981)

    Article  CAS  Google Scholar 

  5. M. Hohage, M. Bott, M. Morgenstern, Z. Zhang, T. Michely, G. Comsa: Atomic Processes in Low Temperature Pt-Dendrite Growth on Pt(111). Phys. Rev. Lett. 76, 2366 (1996)

    Article  CAS  Google Scholar 

  6. M. Bott, T. Michely, G. Comsa: The Homoepitaxial Growth of Pt on Pt(111) Studied with STM. Surf. Sci. 272, 161 (1992)

    Article  CAS  Google Scholar 

  7. T. Michely, G. Comsa: Temperature Dependence of the Sputtering Morphology of Pt(111). Surf. Sci. 256, 217 (1991)

    Article  CAS  Google Scholar 

  8. T. Michely: Atomare Prozesse bei der Pt-Abscheidung auf Pt(111). Habilitationsschrift, Bonn (1996)

    Google Scholar 

  9. J.A. Stroscio, D.T. Pierce, R.A. Dragoset: Homoepitaxial Growth of Iron and a Real Space View of Reflection-High-Energy-Electron Diffraction. Phys. Rev. Lett. 70, 3615 (1993)

    Article  CAS  Google Scholar 

  10. M.Y. Lai, Y.L. Wang: Direct Observation of Two Dimensional Magic Clusters. Phys. Rev. Lett. 81, 164 (1998)

    Article  CAS  Google Scholar 

  11. B. Voigtländer, M. Kästner, P. Smilauer: Magic Islands in Si/Si(111) Homoepitaxy. Phys. Rev. Lett. 81, 858 (1998)

    Article  Google Scholar 

  12. G. Rosenfeld, K. Morgenstern, M. Esser, G. Comsa: Dinamics and Stability of Nano structures on Metal Surfaces. Appl. Phys. A 69, 489 (1999)

    Article  CAS  Google Scholar 

  13. G. Ehrlich, F.G. Hudda: Atomic View of Surface Self-Diffusion: Tungsten on Tungsten. J. Chem. Phys. 44, 1039 (1966)

    Article  CAS  Google Scholar 

  14. R.L. Schwoebel, E.J. Shipsey: Step Motion on Crystal Surfaces. J. Appl. Phys. 37, 3682 (1966)

    Article  CAS  Google Scholar 

  15. G. Rosenfeld, B. Poelsema, G. Comsa: ‘Epitaxial Growth Modes Far from Equilibrium’. In: The Chemical Physics of Solid Surfaces. Vol. 8. Growth and Properties of Ultrathin Epitaxial Layers, ed. by D.A. King, D.P. Woodruff (Elsevier, Amsterdam 1997) pp. 66–101

    Chapter  Google Scholar 

  16. R. People, J.C. Bean: Calculation of Critical Layer Thickness Versus Lattice Mismatch for Ge x Si 1-x /Si Strained-Layer Heteroepitaxy. Appl. Phys. Lett. 47, 322 (1985)

    Article  CAS  Google Scholar 

  17. A.V. Zotov, V.V. Korobtsov: Present Status of Solid Phase Epitaxy of Vacuum-Depo sited Silicon. J. Cryst. Growth 98, 519 (1989)

    Article  CAS  Google Scholar 

  18. N. Pütz, E. Veuhoff, H. Heinecke, M. Heyen, H. Lüth, P. Balk: GaAs Growth in Metal-Organic MBE. J. Vac. Sci. Technol. B 3, 671 (1983)

    Article  Google Scholar 

  19. D.J. Eaglesham, F.C. Unterwald, D.C. Jacobson: Growth Morphology and the Equilibrium Shape: The Role of “Surfactants” in Ge/Si Island Formation. Phys. Rev. Lett. 70, 966 (1993)

    Article  CAS  Google Scholar 

  20. K. Sumitomo, T. Kobayashi, F. Shoji, K. Oura, I. Katayama: Hydrogen-Mediated Epitaxy of Ag on Si(111) as Studied by Low-Energy Ion Scattering. Phys. Rev. Lett. 66, 1193 (1991)

    Article  CAS  Google Scholar 

  21. P. Zahl, P. Kury, M. Horn-von Hoegen: Interplay of Surface Morphology, Strain Relief, and Surface Stress During Surfactant Mediated Epitaxy of Ge on Si. Appl. Phys. A 69, 481 (1999)

    Article  CAS  Google Scholar 

  22. H.A. Van Der Vegt, J. Vrijmoeth, R.J. Behm, E. Vlieg: Sb-Enhanced Nucleation in the Homoepitaxial Growth of Ag(111). Phys. Rev. B 57, 4127 (1998)

    Article  Google Scholar 

  23. H. Brune, G.S. Bales, J. Jacobsen, C. Boragno, K. Kern: Measuring Surface Diffusion from Nucleation Island Density. Phys. Rev. B 60, 5991 (1999)

    Article  CAS  Google Scholar 

Further Reading

  1. B. Lewis, J.C. Anderson: Nucleation and Growth of Thin Films (Academic Press, New York 1978) (solution of nucleation rate equations for various cases)

    Google Scholar 

  2. J.A. Venables, G.D.T. Spiller, M. Hanbücken: Nucleation and Growth of Thin Films. Rep. Prog. Phys. 47, 399–459 (1984) (nucleation rate theory in great detail)

    Article  Google Scholar 

  3. H. Brune: Microscopic View of Epitaxial Metal Growth: Nucleation and Aggregation. Surf. Sci. Rep. 31, 121–229 (1998) (applications of the nucleation rate theory and Monte Carlo simulations for island growth)

    CAS  Google Scholar 

  4. J.G. Amar, F. Family: Kinetics of Submonolayer and Multilayer Epitaxial Growth. Thin Solid Films 272, 208–222 (1996) (introduction to scaling theory of island growth)

    Article  CAS  Google Scholar 

  5. M. Giesen: Step and Island Dynamics at Solid/Vacuum and Solid/Liqued Interfaces. Prog. Surf. Sci. 68, 1–153 (2001) (equilibrium island shape, island ripening, and coalescence in detail)

    Article  CAS  Google Scholar 

  6. M.A. Herman, H. Sitter: Molecular Beam Epitaxy: Fundamentals and Current Status, 2nd ed. (Springer, Berlin 1996)

    Book  Google Scholar 

  7. J.R. Arthur: Molecular Beam Epitaxy. Surf. Sci. 500, 189–217 (2002)

    Article  CAS  Google Scholar 

  8. G.L. Olson, J.A. Roth: Kinetics of Solid Phase Crystallization in Amorphous Silicon. Mater. Sci. Rep. 3, 1–78 (1988)

    Article  CAS  Google Scholar 

  9. A.V. Zotov, V.V. Korobtsov: Present Status of Solid Phase Epitaxy of Vacuum-Depo sited Silicon. J. Cryst. Growth 98, 519–530 (1988)

    Article  Google Scholar 

  10. H. Lüth: Chemical Beam Epitaxy — A Child of Surface Science. Surf. Sci. 299/300, 867–877 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Oura, K., Katayama, M., Zotov, A.V., Lifshits, V.G., Saranin, A.A. (2003). Growth of Thin Films. In: Surface Science. Advanced Texts in Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05179-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05179-5_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05606-2

  • Online ISBN: 978-3-662-05179-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics