Skip to main content

Ageing and Aneuploidy in Oocytes

  • Conference paper
The Future of the Oocyte

Part of the book series: Ernst Schering Research Foundation Workshop ((SCHERING FOUND,volume 41))

Abstract

Correlations between maternal age and Down syndrome have been known already for over half a century (Penrose 1933; Bond and Chandley 1983). Still, the reasons for the dramatic increase in risks for a trisomic conceptus, spontaneous abortion associated with a chromosomally unbalanced embryo and the significantly reduced developmental potential of oocytes and embryos in aged women are unclear. Demographic analysis shows that there still is a trend for delaying childbearing to advanced maternal ages in many industrialized countries. Accordingly, it has been estimated that 25% of conceptions will involve women of 35 years or older in the Netherlands in 2005–2009 (te Velde and Pearson 2002). Many couples attending the infertility clinics are of advanced age. Therefore, it is important to investigate the origin of the maternal age-related decline in fertility associated with aneuploidy in oocytes in order to predict individual risks and, possibly, improve treatment. This contribution reviews briefly the current status of research on the incidence and the origin of aneuploidy in aged oocytes in humans and some experimental animals The observations suggest that prenatal events in oogenesis and recombination patterns influence susceptibility of chromosomes to errors in segregation, but that the depletion of the follicle pool, hormonal homeostasis, the oocyte-specific fragility of cohesion between homologues and permissive cell-cycle regulation at maturation may be important in the reduced quality of aged oocytes, which affects critically the fidelity of chromosome segregation and developmental potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Angell RR (1991) Predivision in human oocytes at meiosis I, a mechanism for trisomy formation in man. Hum Genet 86: 383–387

    Article  PubMed  CAS  Google Scholar 

  • Angell R (1997) First-meiotic-division nondisjunction in human oocytes. Am J Hum Genet 61: 23–32

    Article  PubMed  CAS  Google Scholar 

  • Battaglia DE, Goodwin P, Klein NA, et al (1996) Influence of maternal age on meiotic spindle assembly in oocytes from naturally cycling women. Mol Hum Reprod 11: 2217–2222

    Article  CAS  Google Scholar 

  • Benadiva CA, Kligman I, Munné S (1996) Aneuploidy 16 in human embryos increases significantly with maternal age. Fertil Steril 666: 248–255

    Google Scholar 

  • Benzaken B, Martin-Pont B, Bergere M, et al (1998) Chromosome 21 detection in human oocyte fluorescence in situ hybridization possible effect of maternal age. J Ass Reprod Genet 15: 105–110

    Article  Google Scholar 

  • Bhal PS, Pugh ND, Gregory L, et al (2001) Perifollicular vascularity as a potential variable affecting outcome in stimulated intrauterine insemination treatment cycles: a study using transvaginal power Doppler. Hum Reprod 16: 1682–1689

    Article  PubMed  CAS  Google Scholar 

  • Bond DJ, Chandley AC (1983) Aneuploidy. Oxford monographs on medical genetics No. 11. Oxford University Press, Oxford

    Google Scholar 

  • Brook JD, Gosden RG, Chandley AC (1984) Maternal age and aneuploid embryos: evidence from the mouse that biological and not chronological age is the important influence. Hum Genet 6: 41–45

    Article  Google Scholar 

  • Brown AS, Feingold E, Broman KW, et al (2000) Genome-wide variation in recombination in female meiosis: a risk factor for non-disjunction of chromosome 21. Hum Mol Genet 9: 515–523

    Article  PubMed  CAS  Google Scholar 

  • Brunet S, Maria AS, Guillaud P, et al (1999) Kinetochore fibers are not involved in the formation of the first meiotic spindle in mouse oocytes, but control the exit from the first meiotic M phase. J Cell Biol 146: 1–12

    Article  PubMed  CAS  Google Scholar 

  • Buonomo SB, Clyne RK, Fuchs J et al (2000) Disjunction of homologous chromosomes in meiosis I depends on proteolytic cleavage of the meiotic cohesin Rec8 by separin. Cell 103: 387–398

    Article  PubMed  CAS  Google Scholar 

  • Bugge M, Collins A, Peterson M, et al (1998) Non-disjunction of chromosome 18. Hum Mol Genet 7: 661–669

    Article  PubMed  CAS  Google Scholar 

  • Caligara C, Navarro J, Vargas G et al (2001) The effect of repeated controlled ovarian stimulation in donors. Hum Reprod 16: 2320–2323

    Article  PubMed  CAS  Google Scholar 

  • Carabatsos MJ, Sellitto C, Goodenough DA, et al (2000) Oocyte-granulosa cell heterologous gap junctions are required for the coordination of nuclear and cytoplasmic meiotic competence. Dev Biol 226: 167–179

    Article  PubMed  CAS  Google Scholar 

  • Clyde JM, Gosden RG, Rutherford AJ, et al (2001) Demonstration of a mechanism of aneuploidy in human oocytes using Multifluor fluorescence in situ hybridization. Fertil Steril 76: 837–840

    Article  PubMed  CAS  Google Scholar 

  • Coulam CB, Goodman C, Rinehart JS (1999) Colour Doppler indices of follicular blood flow as predictors of pregnancy after in-vitro fertilization and embryo transfer. Hum Reprod 14: 1979–1982

    Article  PubMed  CAS  Google Scholar 

  • Crowley PH, Gulati DK, Hayden TL, et al (1979) A chiasma-hormonal hypothesis relating Down’s syndrome and maternal age. Nature 280: 417–418

    Article  PubMed  CAS  Google Scholar 

  • Dailey T, Dale B, Cohen J, et al (1996) Association between nondisjunction and maternal age in meiosis-II human oocytes. Am J Hum Genet 59: 176–184

    PubMed  CAS  Google Scholar 

  • De La Fuente R, Eppig JJ (2001) Transcriptional activity of the mouse oocyte genome: companion granulosa cells modulate transcription and chromatin remodeling. Dev Biol 229: 224–236

    Article  Google Scholar 

  • Delhanty JD, Harper JC, Ao A, et al (1997) Multicolour FISH detects frequent chromosomal mosaicism and chaotic division in normal preimplantation embryos from fertile patients. Hum Genet 99: 755–760

    Article  PubMed  CAS  Google Scholar 

  • Eichenlaub-Ritter U (1996) Parental age-related aneuploidy in human germ cells and offspring: a story of past and present. Environ Mol Mutagen 28: 211–236

    Article  PubMed  CAS  Google Scholar 

  • Eichenlaub-Ritter U (1998) Genetics of oocyte ageing. Maturitas 30: 143–169

    Article  PubMed  CAS  Google Scholar 

  • Eichenlaub-Ritter U (2000) The determinants of non-disjunction and their possible relationship with oocyte ageing. In: te Velde ER, Pearson PL, Broekmans FJ (eds) Studies in profertility series 9: female reproductive aging. Parthenon, New York, pp 149–184

    Google Scholar 

  • Eichenlaub-Ritter U, Boll I (1989) Nocodazole sensitivity, age-related aneuploidy, and alterations in the cell cycle during maturation of mouse oocytes. Cytogenet Cell Genet 52: 170–176

    Article  PubMed  CAS  Google Scholar 

  • Eichenlaub-Ritter U, Peschke M (2002) Expression in in vivo and in vitro growing and maturing oocytes: focus on regulation of expression at the translational level. Hum Reprod Update (in press)

    Google Scholar 

  • Eichenlaub-Ritter U, Chandley AC, Gosden RG (1988) The CBA mouse as a model for age-related aneuploidy in man: studies of oocyte maturation, spindle formation and chromosome alignment during meiosis. Chromosoma 96: 220–226

    Article  PubMed  CAS  Google Scholar 

  • Fabricant JD, Schneider E (1978) Studies on the genetic and immunologic components of the maternal age effect. Dev Biol 66: 41–45

    Article  Google Scholar 

  • Faddy MJ (2000) Follicle dynamics during ovarian ageing. Mol Cell Endocrinol 163: 43–48

    Article  PubMed  CAS  Google Scholar 

  • Freeman SB, Yang Q, Allran K (2000) Women with a reduced ovarian complement may have an increased risk for a child with Down syndrome. Am J Hum Genet 66: 1680–1683

    Article  PubMed  CAS  Google Scholar 

  • Fritz B, Hallermann C, Olert J, et al (2001) Cytogenetic analyses of culture failures by comparative genomic hybridisation ( CGH)-Re-evaluation of chromosome aberration rates in early spontaneous abortions. Eur J Hum Genet 9: 539–547

    Article  PubMed  CAS  Google Scholar 

  • Fulka J Jr, Jung T, Moor RM (1992) The fall of biological maturation promoting factor (MPF) and histone H1 kinase activity during anaphase and telophase in mouse oocytes. Mol Reprod Dev 32: 378–382

    Article  PubMed  CAS  Google Scholar 

  • Gardner RD, Burke DJ (2000) The spindle checkpoint: two transitions, two pathways. Trends Cell Biol 10: 154–218

    Article  PubMed  CAS  Google Scholar 

  • Gaulden ME (1992) Maternal age-effect: the enigma of Down syndrome and other trisomie conditions. Mutation Res 296: 69–88

    Article  PubMed  CAS  Google Scholar 

  • Gianaroli L, Magli MC, Ferraretti AP, et al (1999) Preimplantation diagnosis for aneuploidies in patients undergoing in vitro fertilization with a poor prognosis: identification of the categories for which it should be proposed. Fertil Steril 72: 837–844

    Article  PubMed  CAS  Google Scholar 

  • Gosden RG (1973) Chromosome anomalies of preimplantation mouse embryos in relation to maternal age. J Reprod Fertil 35: 351–354

    Article  PubMed  CAS  Google Scholar 

  • Gras L, McBain J, Trounson A, et al (1992) The incidence of chromosomal aneuploidy in stimulated and unstimulated [natural] uninseminated human oocytes. Hum Reprod 7: 1396–1401

    PubMed  CAS  Google Scholar 

  • Harrison RH, Kuo HC, Scriven PN (2000) Lack of cell cycle checkpoints in human cleavage stage embryos revealed by a clonal pattern of chromosomal mosaicism analysed by sequential multicolour FISH. Zygote 8: 217–224

    Article  PubMed  CAS  Google Scholar 

  • Hassold TJ (1998) Nondisjunction in the human male. Curr Topics Dev Biol 37: 383–406

    Article  CAS  Google Scholar 

  • Hassold T, Hunt P (2001) To err (meiotically) is human: the genesis of human aneuploidy. Nat Rev Genet 2: 280–291

    Article  PubMed  CAS  Google Scholar 

  • Hassold TJ, Sherman SL, Pettay D, et al (1991) XY chromosome nondisjunction in man is associated with diminished recombination in the pseudoautosomal region. Am J Hum Genet 49: 253–260

    PubMed  CAS  Google Scholar 

  • Hassold TJ, Merrill M, Adkins K, et al (1995) Recombination and maternal age-related non-disjunction: molecular studies of trisomy 16. Am J Hum Genet 57: 867–874

    PubMed  CAS  Google Scholar 

  • Hassold T, Sherman S, Hunt P (2000) Counting cross-overs: characterizing meiotic recombination in mammals. Hum Mol Genet 9: 2409–2419

    Article  PubMed  CAS  Google Scholar 

  • Henderson SA, Edwards RG (1968) Chiasma frequency and maternal age in mammals. Nature 217: 22–28

    Article  Google Scholar 

  • Hodges CA, LeMaire-Adkins R, Hunt PA (2001) Coordinating the segregation of sister chromatids during the first meiotic division: evidence for sexual dimorphism. J Cell Sci 114: 2417–2426

    PubMed  CAS  Google Scholar 

  • Iwarsson E, Lundqvist M, Inzunza J, et al (1999) A high degree of aneuploidy in frozen-thawed human preimplantation embryos. Hum Genet 104: 376–382

    Article  PubMed  CAS  Google Scholar 

  • Jamieson ME, Coutts JR, Connor JM (1994) The chromosome constitution of human preimplantation embryos fertilized in vitro. Mol Hum Reprod 9: 709–715

    CAS  Google Scholar 

  • Keefe DL, Niven-Fairchild T, Powell S, et al (1995) Mitochondrial deoxyribonucleic acid deletions in oocytes and reproductive aging in women. Fertil Steril 64: 577–583

    PubMed  CAS  Google Scholar 

  • Kline J, Kinney A, Levin B, et al (2000) Trisomic pregnancy and earlier age at menopause. Am J Hum Genet 67: 395–404

    Article  PubMed  CAS  Google Scholar 

  • Koehler KE, Hawley RS, Sherman S, et al (1996) Recombination and nondisjunction in humans and flies. Hum Mol Genet 5: 1495–1504

    PubMed  CAS  Google Scholar 

  • Lamb NE, Freeman SB, Savage-Austin A, et al (1996) Susceptible chiasmate configurations of chromosome 21 predispose to non-disjunction in both maternal meiosis I and meiosis II. Nat Genet 14: 400–405

    Article  PubMed  CAS  Google Scholar 

  • Lamb NE, Feingold E, Savage A, et al (1997) Characterization of susceptible chiasma configurations that increase the risk for maternal nondisjunction of chromosome 21. Hum Mol Genet 6: 1391–1399

    Article  PubMed  CAS  Google Scholar 

  • Ledan E, Polanski Z, Tenet ME (2001) Meiotic maturation of the mouse oocyte requires an equilibrium between cyclin B synthesis and degradation. Dev Biol 232: 400–413

    Article  PubMed  CAS  Google Scholar 

  • Lee JY, Orr-Weaver TL (2001) The molecular basis of sister-chromatid cohesion. Annu Rev Cell Dev Biol 17: 753–777

    Article  PubMed  CAS  Google Scholar 

  • LeMaire-Adkins E, Radke K, Hunt PA (1997) Lack of checkpoint control at the metaphase-anaphase transition: a mechanism of meiotic non-disjunction in mammalian females. J Cell Biol 139: 1611–1619

    Article  PubMed  CAS  Google Scholar 

  • LeMaire-Adkins R, Hunt PA (2000) Nonrandom segregation of the mouse univalent X chromosome: evidence of spindle-mediated meiotic drive. Genetics 156: 775–783

    PubMed  CAS  Google Scholar 

  • Libby BJ, De La Fuente R, O’Brien MJ, et al (2002) The mouse meiotic mutation mei 1 disrupts chromosome synapsis with sexually dimorphic consequences for meiotic progression. Dev Biol 242: 174–187

    Article  PubMed  CAS  Google Scholar 

  • Lu Q, Dunn RL, Angeles R, et al (2002) Regulation of spindle formation by active mitogen-activated protein kinase and protein phosphatase 2 a during mouse oocyte meiosis. Biol Reprod 66: 29–37

    Article  PubMed  CAS  Google Scholar 

  • MacDonald M, Hassold TJ, Harvey J (1994) The origin of 47,XXY and 47,XXX aneuploidy: heterogeneous mechanisms and role of aberrant recombination. Hum Mol Genet 3: 1365–1371

    Article  PubMed  CAS  Google Scholar 

  • Mahmood R, Brierley CH, Faed MJ, et al (2000) Mechanisms of maternal aneuploidy: FISH analysis of oocytes and polar bodies in patients undergoing assisted conception. Hum Genet 106: 620–626

    Article  PubMed  CAS  Google Scholar 

  • Mailhes JB, Young D, London SN (1998) Postovulatory ageing of mouse oocytes in vivo and premature centromere separation and aneuploidy. Biol Re-prod 58: 1206–1210

    Article  CAS  Google Scholar 

  • Marquez C, Cohen J, Munné S (1998) Chromosome identification in human oocytes and polar bodies by spectral karyotyping. Cytogenet Cell Genet 81: 254–258

    Article  PubMed  CAS  Google Scholar 

  • Marquez C, Sandalinas M, Bahçe M, et al (2000) Chromosome abnormalities in 1255 cleavage-stage human embryos. Reprod Biomed Online 1: 17–27

    Article  PubMed  CAS  Google Scholar 

  • Martini E, Flaherty SP, Swann NJ (2000) FISH analysis of six chromosomes in unfertilized human oocytes after polar body removal. J Assist Reprod Genet 17: 276–283

    Article  PubMed  CAS  Google Scholar 

  • Mitra J, Schultz RM (1996) Regulation of the acquisition of meiotic competence in the mouse: changes in the subcellular localization of cdc2, cyclin B1, cdc25 C and weel, and in the concentration of these proteins and their transcripts. J Cell Sci 109: 2407–2415

    PubMed  CAS  Google Scholar 

  • Muller-Hocker J, Schafer S, Weis S, et al (1996) Morphological-cytochemical and molecular genetic analyses of mitochondria in isolated human oocytes in the reproductive age. Mol Hum Reprod 2: 951–958

    Article  PubMed  CAS  Google Scholar 

  • Munné S, Cohen J (1998) Chromosome abnormalities in human embryos. Hum Reprod Update 4: 842–855

    Article  PubMed  Google Scholar 

  • Nakaoka Y, Okamoto E, Miharu N. et al (1998) Chromosome analysis in human oocytes remaining unfertilized after in-vitro insemination: effect of maternal age and fertilization rate. Hum Reprod 13: 419–424

    Article  PubMed  CAS  Google Scholar 

  • Nasmyth K (2001) Disseminating the genome: joining, resolving, and separating sister chromatids during mitosis and meiosis. Annu Rev Genet 35: 673–745

    Article  PubMed  CAS  Google Scholar 

  • Nicklas RB, Waters JC, Salmon ED, et al (2001) Checkpoint signals in grasshopper meiosis are sensitive to microtubule attachment, but tension is still essential. J Cell Sci 114: 4173–4183

    PubMed  CAS  Google Scholar 

  • Parisi S, McKay MJ, Molnar M, et al (1999) Recap, a meiotic recombination and sister chromatid cohesion phosphoprotein of the Rad2lp family is conserved from fission yeast to humans. Mol Cell Biol 19: 3515–3528

    PubMed  CAS  Google Scholar 

  • Penrose LS (1933) The relative effects of paternal and maternal age in mongolism. J Genet 27: 219–224

    Article  Google Scholar 

  • Plachot M (2001) Chromosomal abnormalities in oocytes. Mol Cell Endocrinol 183 (Suppl 1): S59–S63

    Article  PubMed  CAS  Google Scholar 

  • Polani PE, Crolla JA (1981) A test of the production line hypothesis of mammalian oogenesis. Hum Genet 88: 64–70

    Article  Google Scholar 

  • Rieder CL, Schultz A, Cole R, et al (1994) Anaphase onset in vertebrate somatic cells is controlled by a checkpoint that monitors sister kinetochore attachment to the spindle. J Cell Biol 127: 1301–1310

    Article  PubMed  CAS  Google Scholar 

  • Robinson WP, Kuchinka, B., Bernasconi F, et al (1998) Maternal meiosis I non-disjunction of chromosome 15: dependence of the maternal age effect on level of recombination. Hum Mol Genet 7: 1011–1019

    Article  PubMed  CAS  Google Scholar 

  • Roeder GS, Bailis JM (2000) The pachytene checkpoint. Trends Genet 16: 395–403

    Article  PubMed  CAS  Google Scholar 

  • Sakurada K, Ishikawa H, Endo A (1996) Cytogenetic effects of advanced maternal age and delayed fertilization on first-cleavage mouse embryos. Cytogenet Cell Genet 72: 46–49

    Article  PubMed  CAS  Google Scholar 

  • Schon EA, Kim SH, Ferreira JC, et al (2000) Chromosomal non-disjunction in human oocytes: is there a mitochondrial connection? Hum Reprod 15 (Suppl 2): 160–172

    Article  PubMed  Google Scholar 

  • Sears DD, Hegemann JH, Hieter P (1992) Meiotic recombination and segregation of human-derived artificial chromosomes in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 89: 5296–5300

    Article  PubMed  CAS  Google Scholar 

  • Shonn MA, McCarroll R, Murray AW (2000) Requirement of the spindle checkpoint for proper chromosome segregation in budding yeast meiosis. Science 289: 300–303

    Article  PubMed  CAS  Google Scholar 

  • Soewarto D, Schmiady H, Eichenlaub-Ritter U (1995) Consequences of non-extrusion of the first polar body and control of the sequential segregation of homologues and chromatids in mammalian oocytes. Hum Reprod 10: 2350–2360

    PubMed  CAS  Google Scholar 

  • Steuerwald N, Cohen J, Herrera RJ, et al (2001) Association between spindle assembly checkpoint expression and maternal age in human oocytes. Mol Hum Reprod 7: 49–55

    Article  PubMed  CAS  Google Scholar 

  • Sudakin V, Chan GK, Yen TJ (2001) Checkpoint inhibition of the APC/C in HeLa cells is mediated by a complex of BUBR1, BUB3, CDC20, and MAD2. J Cell Biol 154: 925–936

    Article  PubMed  CAS  Google Scholar 

  • Sugawara S, Mikamo K (1983) Absence of correlation between univalent formation and meiotic nondisjunction in aged female Chinese hamsters. Cytogenet Cell Genet 35: 34–40

    Article  PubMed  CAS  Google Scholar 

  • Sun F, Yin H, Eichenlaub-Ritter U (2001) Differential chromosome behaviour in mammalian oocytes exposed to the tranquilizer diazepam in vitro. Mutagenesis 16: 407–417

    Article  PubMed  CAS  Google Scholar 

  • Tarin JJ (1996) Potential effects of age-associated oxidative stress on mammalian oocytes/embryos. Mol Hum Reprod 2: 717–724

    Article  PubMed  CAS  Google Scholar 

  • Tay J, Richter JD (2001) Germ cell differentiation and synaptonemal complex formation are disrupted in CPEB knockout mice. Dev Cell 1: 201–213

    Article  PubMed  CAS  Google Scholar 

  • Velde E, Pearson P (2002) The variability of female reproductive ageing. Hum Reprod Update 8: 141–154

    Article  Google Scholar 

  • Toth A, Rabitsch KP, Galova M (2000) Functional genomics identifies monopolin: a kinetochore protein required for segregation of homologs during meiosis I. Cell 103: 1155–1168

    Article  PubMed  CAS  Google Scholar 

  • Blerkom J (2000) Intrafollicular influences on human oocyte developmental competence: perifollicular vascularity, oocyte metabolism and mitochondrial function. Hum Reprod 15 (Suppl 2): 173–188

    Article  PubMed  Google Scholar 

  • Blerkom J, Davis P (2001) Differential effects of repeated ovarian stimulation on cytoplasmic and spindle organization in metaphase II mouse oocytes matured in vivo and in vitro. Mol Hum Reprod 16: 757–764

    Article  Google Scholar 

  • Vaskivuo TE, Anttonen M, Herva R, et al (2001) Survival of human ovarian follicles from fetal to adult life: apoptosis, apoptosis-related proteins, and transcription factor GATA-4.Clin Endocrinol Metab 86: 3421–3429.

    CAS  Google Scholar 

  • Verlhac MH, Kubiak J, Clarke HJ, et al (1994) Microtubule and chromatin behaviour follow MAP kinase activity but not MPF during meiosis in mouse oocytes. Development 120: 1017–1025

    PubMed  CAS  Google Scholar 

  • Verlinsky Y, Cieslak J, Ivakhnenko V, et al (2001) Chromosomal abnormalities in the first and second polar body. Mol Cell Endocrinol 183 (Suppl 1): S47–S49

    Article  PubMed  CAS  Google Scholar 

  • Volarcik K, Sheean L, Goldfarb J, et al (1998) The meiotic competence of human oocytes is influenced by donor age: evidence that folliculogenesis is compromised in the reproductively aged ovary. Hum Reprod 13: 154–160

    Article  PubMed  CAS  Google Scholar 

  • Warburton D, Kinney A (1996) Chromosomal differences in suceptibility to meiotic aneuploidy. Environ Mol Mutagen 28: 237–247

    Article  PubMed  CAS  Google Scholar 

  • Wells D, Delhanty JD (2000) Comprehensive chromosomal analysis of human preimplantation embryos using whole genome amplification and single cell comparative genomic hybridization. Mol Hum Reprod 6: 1055–1062

    Article  PubMed  CAS  Google Scholar 

  • Wilding M, Dale B, Marino M, et al (2001) Mitochondrial aggregation patterns and activity in human oocytes and preimplantation embryos. Hum Re-prod 16: 909–917

    Article  CAS  Google Scholar 

  • Wolstenholme J, Angell RR (2000) Maternal age and trisomy — a unifying mechanism of formation. Chromosoma 109: 435–438

    Article  PubMed  CAS  Google Scholar 

  • Woods LM, Hodges CA, Baart E, et al (1999) Chromosomal influence on meiotic spindle assembly: abnormal meiosis I in female Mlhl mutant mice. J Cell Biol 145: 1395–1406

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Zhang L, Wang X (2000) Maturation and apoptosis of human oocytes in vitro are age-related. Fertil Steril 74: 1137–1141

    Article  PubMed  CAS  Google Scholar 

  • Zuccotti M, Boiani M, Garagna S (1998) Analysis of aneuploidy rate in antral and ovulated mouse oocytes during female aging. Mol Reprod Dev 50: 305–331

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Eichenlaub-Ritter, U. (2002). Ageing and Aneuploidy in Oocytes. In: Eppig, J., Hegele-Hartung, C., Lessl, M. (eds) The Future of the Oocyte. Ernst Schering Research Foundation Workshop, vol 41. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04960-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04960-0_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-04962-4

  • Online ISBN: 978-3-662-04960-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics