Skip to main content

FF-MAS and Its Role in Mammalian Oocyte Maturation

  • Conference paper
The Future of the Oocyte

Part of the book series: Ernst Schering Research Foundation Workshop ((SCHERING FOUND,volume 41))

  • 114 Accesses

Abstract

Fertilization of the mammalian oocytes completes the meiotic process that has been initiated at the time of oocyte formation in fetal life. The meiotic cell division is a prerequisite for sexual reproduction and constitutes a unique cell division not only to produce gametes but also to control the successful interaction of gametes. The pituitary hormones follicle-stimulating hormone (FSH) and luteinizing hormone (LH) are generally believed to control the overall regulation of ovarian physiology and thereby also control the processes of follicular growth, oocytes maturation, and follicle ovulation. The mechanism by which the oocytes are inhibited from resuming meiosis in the ovarian follicular environment has not been completely elucidated. The follicle fluid contains purines, e.g., hypoxanthine, that are considered to be important inhibitory substances of oocyte maturation (Downs 1993; Downs et al. 1985; Eppig et al. 1985).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adashi EY (1994) Endocrinology of the ovary. Hum Reprod 9: 815–827

    Article  PubMed  CAS  Google Scholar 

  • Avery B, Faerge I, Grt ndahl C, et al (1999) Nuclear maturation and embryo development of bovine oocytes matured in semi-defined medium supplemented with meiosis-activating sterol ( MAS) (abstract ). Theriogenology 51: 367

    Google Scholar 

  • Barnes FL, Crombie A, Gardner DK, et al (1995) Blastocyst development and birth after in-vitro maturation of human primary oocytes, intracytoplasmic sperm injection and assisted hatching. Hum Reprod 10: 3243–3247

    PubMed  CAS  Google Scholar 

  • Byskov AG, Andersen CY, Nordholm L, et al (1995) Chemical-structure of sterols that activate oocyte meiosis. Nature 374: 559–562

    Article  PubMed  CAS  Google Scholar 

  • Byskov AG, Andersen CY, Hossaini A, et al (1997) Cumulus cells of oocyte-cumulus complexes secrete a meiosis-activating substance when stimulated with FSH. Mol Reprod Dev 46: 296–305

    Article  PubMed  CAS  Google Scholar 

  • Byskov AG, Andersen CY, Leonardsen L, et al (1999) Meiosis activating ster- ols (MAS) and fertility in mammals and man J Exp Zool 285: 237–242

    CAS  Google Scholar 

  • Cha KY, Koo JJ, Ko JJ, et al (1991) Pregnancy after in vitro fertilization of human follicular oocytes collected from nonstimulated cycles, their culture in vitro and their transfer in a donor oocyte program. Fertil Steril 55: 109–113

    PubMed  CAS  Google Scholar 

  • Cho WK, Stern S, Biggers JD (1974) Inhibitory effect of dibutyric cAMP on mouse oocyte maturation in vitro. J Exp Zool 187: 383–386

    Article  PubMed  CAS  Google Scholar 

  • Coticchio G, Fleming S (1998) Inhibition of phosphoinositide metabolism or chelation of intracellular calcium blocks FSH-induced but not spontaneous meiotic resumption in mouse oocytes. Dev Biol 203: 201–209

    Article  PubMed  CAS  Google Scholar 

  • Dekel N, Aberdam E, Sherizly I (1984) Spontaneous maturation in vitro of cumu- lus-enclosed rat oocytes is inhibited by forskolin. Biol Reprod 31: 244–250

    Article  PubMed  CAS  Google Scholar 

  • Downs SM (1993) Purine control of mouse oocyte maturation — evidence that nonmetabolized hypoxanthine maintains meiotic arrest. Mol Reprod Dev 35: 82–94

    Article  PubMed  CAS  Google Scholar 

  • Downs SM, Coleman DL, Ward-Bailey PF, et al (1985) Hypoxanthine is the principal inhibitor of murine oocyte maturation in a low molecular weight fraction of porcine follicular fluid. Proc Natl Acad Sci USA 82: 454–458

    Article  PubMed  CAS  Google Scholar 

  • Downs SM, Daniel SAJ, Bornslaegger EA, et al (1988) Induction of maturation in cumulus cell-enclosed mouse oocytes by follicle-stimulating hormone and epidermal growth factor: evidence for a positive stimulus of somatic cell origin. J Exp Zool 245: 86–96

    Article  PubMed  CAS  Google Scholar 

  • Downs SM, Ruan B, Schroepfer GJ Jr (2001) Meiosis-activating sterol and the maturation of isolated mouse oocytes. Biol Reprod 64: 80–89

    Article  PubMed  CAS  Google Scholar 

  • Edwards RG (1965) Maturation in vitro of mouse, sheep, cow, pig, rhesus monkey and human ovarian oocytes. Nature 208: 349–351

    Article  PubMed  CAS  Google Scholar 

  • Eppig JJ (1989) The participation of cyclic adenosine monophosphate (cAMP) in the regulation of meiotic maturation of oocytes in the laboratory mouse. J Reprod Fertil 38: 3–8

    CAS  Google Scholar 

  • Eppig JJ, Downs SM (1984) Chemical signals that regulate mammalian oocyte maturation. Biol Reprod 30: 1–11

    Article  PubMed  CAS  Google Scholar 

  • Eppig JJ, Ward-Bailey PF, Coleman DL (1985) Hypoxanthine and adenosine in murine ovarian follicular fluid: concentrations and activity in maintaining oocyte meiotic arrest. Biol Reprod 33: 1041–1049

    Article  PubMed  CAS  Google Scholar 

  • Eppig JJ, Wigglesworth K, Pendola F, et al (1997) Murine oocytes suppress expression of luteinizing hormone receptor messenger ribonucleic acid by granulosa cells. Biol Reprod 56: 976–984

    Article  PubMed  CAS  Google Scholar 

  • Færge I, Terry B, Kalous J, et al (2001) The resumption of meiosis induced by meiosis-activating sterol ( MAS) has different signal transduction pathway than spontaneous resumption of meiosis in denuded mouse oocytes cultured in vitro. Biol Reprod 65: 1751–1758

    Google Scholar 

  • Gr¢ndahl C, Ottesen JL, Lessl M, et al (1998) Meiosis-activating sterol promotes resumption of meiosis in mouse oocytes cultured in vitro in contrast to related oxysterols. Biol Reprod 58: 1297–1302

    Article  Google Scholar 

  • Grtndahl C, Hansen TH, Marky-Nielsen K, et al (2000a) Human oocyte maturation in vitro is stimulated by meiosis-activating sterol. Hum Reprod 15 [Suppl 51: 3–10

    Article  Google Scholar 

  • Grondahl C, Lessl M, Færge I, et al (2000b) Meiosis activating sterol mediated resumption of meiosis in mouse oocytes in vitro is influenced by protein synthesis inhibition and cholera toxin. Biol Reprod 62: 775–780

    Article  PubMed  CAS  Google Scholar 

  • Grtndahl C, Breinholt J, Host Hansen T, et al (2001) Cascade of closely related endogenous MAS sterols in human follicular fluid that possess meiotic inducing activity in mouse oocytes cultured in vitro (abstract). Fertil Steril 76 (3S): 457

    Google Scholar 

  • Guoliang X, Byskov AG, Andersen CY (1994) Cumulus cells secrete a meiosis-inducing substance by stimulation with forskolin and dibutyric cyclic adenosine-monophosphate. Mol Reprod Dev 39: 17–24

    Article  CAS  Google Scholar 

  • Hegele-Hartung C, Lessl M, Ottesen JL, et al (1998) Oocyte maturation can be induced by a synthetic meiosis activating sterol ( MAS) leading to an improvement of IVF rate in mice (abstract ). Hum Reprod 11: 193

    Google Scholar 

  • Hegele-Hartung C, Kuhnke J, Lessl M, et al (1999) Nuclear and cytoplasmic maturation of mouse oocytes after treatment with synthetic meiosis-activating sterol in vitro. Biol Reprod 61: 1362–1372

    Article  PubMed  CAS  Google Scholar 

  • Hegele-Hartung C, Grützner M, Lessl M, et al (2001) Activation of meiotic maturation in rat oocytes after treatment with follicular fluid meiosis-activating sterol in vitro and ex vivo. Biol Reprod 64: 418–424

    Article  PubMed  CAS  Google Scholar 

  • Leibfried L, First NL (1980) Effect of bovine and porcine follicular fluid and granulosa cells on maturation of oocytes in vitro. Biol Reprod 23: 699–704

    Article  PubMed  CAS  Google Scholar 

  • Leonardsen L, Wiersma A, Baltsen M, et al (2000) Regulation of spontaneous and induced resumption of meiosis in mouse oocytes by different intracellular pathways. J Reprod Fertil 120: 377–383

    Article  PubMed  CAS  Google Scholar 

  • Merriman JA, Whittingham DG, Carroll J (1998) The effect of follicle stimulating hormone and epidermal growth factor on the developmental capacity of in-vitro matured mouse oocytes. Hum Reprod 13: 690–695

    Article  PubMed  CAS  Google Scholar 

  • Morishige K, Kurachi H, Amemiya K, et al (1993) Menstrual stage-specific expression of epidermal growth factor and transforming growth factor-alpha in human oviduct epithelium and their role in early embryogenesis. Endocrinology 133: 199–207

    Article  PubMed  CAS  Google Scholar 

  • Pincus G, Enzmann EV (1935) The comparative behavior of mammalian eggs in vivo and in vitro. I. The activation of ovarian eggs. J Exp Med 62: 655–675

    Google Scholar 

  • Richard FJ, Sirard MA (1996) Effects of follicular cells on oocyte maturation. II. Theca cell inhibition of bovine oocyte maturation in vitro. Biol Reprod 54: 22–28

    Google Scholar 

  • Russell JB, Knezevich KM, Fabian FF, et al (1997) Unstimulated immature oocyte retrieval: early versus midfollicular endometrial priming. Fertil Steril 67: 616–620

    Article  PubMed  CAS  Google Scholar 

  • Singh B, Barbe GJ, Armstrong DT (1993) Factors influencing resumption of meiotic maturation and cumulus expansion of porcine oocyte-cumulus cell complexes in vitro. Mol Reprod Dev 36: 113–119

    Article  PubMed  CAS  Google Scholar 

  • Trounson AO, Wood C, Kausche A (1994) In vitro maturation and the fertilization and developmental competence of oocytes recovered from untreated polycystic ovarian patients. Fertil Steril 62: 353–362

    PubMed  CAS  Google Scholar 

  • Trounson AO, Anderiesz C, Jones G (2001) Maturation of human oocytes in vitro and their developmental competence. Reproduction 121: 51–75

    Article  PubMed  CAS  Google Scholar 

  • Tsafriri A, Channing CP (1975) An inhibitory influence of granulosa cells and follicular fluid upon porcine oocyte meiosis in vitro. Endocrinology 96: 922–927

    Article  PubMed  CAS  Google Scholar 

  • Tsafriri A, Chun SY, Zhang R, et al (1996) Oocyte maturation involves compartmentalization and opposing changes of cAMP levels in follicular somatic and germ cells: studies using selective phosphodiesterase inhibitors. Develop Biol 178: 393–402

    Article  PubMed  CAS  Google Scholar 

  • Verlhac MH, Kubiak JZ, Weber M, et al (1996) Mos is required for MAP kinase activation and is involved in microtubule organization during meiotic maturation in the mouse. Development 122: 815–822

    PubMed  CAS  Google Scholar 

  • Weston AM, Zelinski-Wooten MB, Hutchison JS, et al (1996) Developmental potential of embryos produced by in-vitro fertilization from gonadotropinreleasing hormone antagonist-treated macaques stimulated with recombinant human follicle stimulating hormone alone or in combination with luteinizing hormone. Hum Reprod 11: 608–613

    Article  PubMed  CAS  Google Scholar 

  • Yamashita M (2000) Toward modelling of a general mechanism of MPF formation during oocyte maturation in Vertebrates. Zool Sci 7: 41–851

    Google Scholar 

  • Zhang X, Zerafa A, Wong J, et al (1993) Human menopausal gonadotropin during in vitro maturation of human oocytes retrieved from small follicles enhances in vitro fertilization and cleavage rates. Fertil Steril 59: 850–853

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Grøndahl, C. (2002). FF-MAS and Its Role in Mammalian Oocyte Maturation. In: Eppig, J., Hegele-Hartung, C., Lessl, M. (eds) The Future of the Oocyte. Ernst Schering Research Foundation Workshop, vol 41. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04960-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04960-0_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-04962-4

  • Online ISBN: 978-3-662-04960-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics