Skip to main content

GOCE Gravity Field Recovery Using Massive Parallel Computing

  • Conference paper
Gravity, Geoid and Geodynamics 2000

Part of the book series: International Association of Geodesy Symposia ((IAG SYMPOSIA,volume 123))

Abstract

The Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) mission has been selected by the Earth Sciences Advisory Committee (ESAC) of the European Space Agency (ESA) as the first of two core missions of ESA’s Earth Explorer Programme to be launched in 2004. The main objective of the GOCE mission is to provide a high-accuracy high-resolution global model of the Earth’s static gravity field and the geoid from a combination of spaceborne gravity gradiometry (SGG) and high-low satellite-to-satellite tracking (hl-SST). Of the order of a hundred thousand gravity field parameters have to be estimated from tens of millions measured gravity gradients, which makes a brute force approach in terms of a least-squares solution of the observation equations an enormous numerical task. This huge number of observations and gravity field parameters does not allow to set-up the design matrix and the normal matrix explicitly. In turn this implies that existing software libraries for the platform of choice cannot be used directly. Therefore, we discuss a (parallellized) data processing approach for SGG data on the CRAY T3E supercomputer at Delft University of Technology, which only requires the application of the design matrix or its transposed to some vectors. Moreover, we discuss the performance of the algorithm in terms of degree of parallelism and scalability properties based on simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Hestenes, M.R., Stiefel, E. (1952). Methods of conjugate gradients for solving linear systems. J. Res. Nat. Bur. Standards Vol 49, pp. 409–436.

    Article  Google Scholar 

  • Kaula, W. (1966). Theory of Satellite Geodesy. Blaisdell Publishing Company, Waltham, Massachusetts, U.S.A.

    Google Scholar 

  • Klees, R., Koop, R., Visser, P.N.A.M., van den Ijssel, J. (2000). Efficient Gravity Field Recovery From GOCE Gravity Gradient Observations. Journal of Geodesy Vol 74, pp. 561–571.

    Article  Google Scholar 

  • Koop, R. (1993). Global gravity field modelling using satellite gravity gradiometr. Publications on Geodesy, New Series, Number 38, Netherlands Geodetic Commission.

    Google Scholar 

  • Koop, R., Visser, P.N.A.M., van den Ijssel, J., Klees, R. (2000). Detailed scientific data processing approach. In: H. Sünkel (ed.), Prom Eötvös to Milligal, Final Report, ESA/ESTEC Contract No. 13392/98/NL/GD, pp. 29–71.

    Google Scholar 

  • Lawson, C, Hanson, R., Kincaid, D., Krogh, F. (1979). Basic Linear Algebra Subprograms for Fortran usage. ACM Trans. Math. Softw., Vol 5, pp. 308–329.

    Article  Google Scholar 

  • Rummel, R., van Gelderen, M., Koop, R. Schrama, E., Sanso, F., Brovelli, M., Miggliaccio, F., Sacerdote, F. (1993). Spherical harmonic analysis of satellite gradiometry. Publications on Geodesy, New Series, Number 39, Netherlands Geodetic Commission.

    Google Scholar 

  • Schrama, E. (1990). Gravity field error analysis: applications of GPS receivers and gradiometers on low orbiting platforms. NASA Technical Memorandum 100769, Goddard Space Flight Center, Greenbelt, MD.

    Google Scholar 

  • Schuh, WD. (2000). Scientific data processing algorithms. In: H. Sünkel (ed.), From Eötvös to Milligal, Final Report, ESA/ESTEC Contract No. 13392/98/NL/GD, pp. 105–156.

    Google Scholar 

  • Sneeuw, N.S. (1991). Inclination functions, group theoretical background and a recursive algorithm Technical Report 91.2, Faculty of Geodetic Engineering, Delft University of Technology.

    Google Scholar 

  • Visser, P.N.A.M., van den Ussel, J. (2000). GPS-based precise orbit determination of the very low Earth-orbiting gravity mission GOCE. Journal of Geodesy Vol 74, pp. 590–602.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Klees, R., Koop, R., van Geemert, R., Visser, P.N.A.M. (2001). GOCE Gravity Field Recovery Using Massive Parallel Computing. In: Sideris, M.G. (eds) Gravity, Geoid and Geodynamics 2000. International Association of Geodesy Symposia, vol 123. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04827-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04827-6_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07634-3

  • Online ISBN: 978-3-662-04827-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics