Skip to main content

Extended Ensemble Monte Carlo Method

  • Chapter
Clusters and Nanomaterials

Part of the book series: Springer Series in CLUSTER PHYSICS ((CLUSTER))

  • 223 Accesses

Summary

We present the extended ensemble methods, i.e., the multiple temperature isobaric ensemble method, the isothermal multiple pressure ensemble method, and the multiple temperature and pressure ensemble method, as accelerated simulation techniques. We show that these are efficient for a simple material such as the Lennard—Jones system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.D. Chandani, E. Georecha, Y. Ouchi, H. Takezoe, A. Fukuda: Jpn. J. Appl. Phys. 28, L1265 (1989)

    Article  ADS  Google Scholar 

  2. K. Hori, K. Endo: Bull. Chem. Soc. Jpn. 66, 46 (1993)

    Article  Google Scholar 

  3. H. Toriumi, M. Yoshida, M. Mikami, M. Takeuchi, A. Mochizuki: J. Phys. Chem. 100, 15207 (1996)

    Article  Google Scholar 

  4. M.B. Kruger, R. Jeanloz: Science 249, 647 (1992)

    Article  ADS  Google Scholar 

  5. M. Mikami, I. Fukuda: Molecular Simulation 16, 375 (1996)

    Article  Google Scholar 

  6. R. Lee, K. Ohno, Y. Kawazoe, M. Mikami, Y. Masuda: Comp. Mater. Sci. 4, 241 (1995)

    Article  Google Scholar 

  7. M. Mikami, T. Matsuzaki, M. Masuda, T. Shimizu, K. Tanabe: Comp. Mater. Sci. 14, 267 (1999)

    Google Scholar 

  8. B.A. Berg, T. Neuhaus: Phys. Lett. B267, 249 (1991)

    Google Scholar 

  9. C. Tsallis: J. Stat. Phys. 52, 479 (1988)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. G.M. Torrie, J.P. Valleau: J. Comp. Phys. 23, 187 (1977)

    Article  ADS  Google Scholar 

  11. Y. Okamoto, U.H.E. Hansmann: J. Phys. Chem. 99, 2236 (1995)

    Article  Google Scholar 

  12. G.R. Smith, A.D. Bruce: Phys. Rev. E53, 6530 (1996)

    ADS  Google Scholar 

  13. M. Mikami, C. Muguruma, M. Kawata, Y. Okamoto: Chem. Phys. Lett. to be submitted

    Google Scholar 

  14. L.R. McDonald: Mol. Phys. 23, 41 (1972)

    Article  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mikami, M. (2002). Extended Ensemble Monte Carlo Method. In: Kawazoe, Y., Kondow, T., Ohno, K. (eds) Clusters and Nanomaterials. Springer Series in CLUSTER PHYSICS. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04812-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04812-2_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07522-3

  • Online ISBN: 978-3-662-04812-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics