Skip to main content

Abstract

The sandy shores of ocean beaches deform under the continual action of waves and currents into a rich set of patterns and morphologies with scales from centimeters to kilometers. Since the bathymetry acts as a boundary condition to the progressing waves and those waves also slowly modify the bathymetry, an important feedback loop exists. It appears to be this feedback that causes observed nearshore morphologies, rather than the sand simply responding to a pattern of forcing imposed by the fluids. Because interactions between the fluid and sediment are inherently nonlinear, they can be complicated to study. For weak nonlinearities, perturbation techniques are available, or the system may be modeled numerically in a series of small time steps. However, as the time scales of interest extend, small errors in forward stepping models grow exponentially and other approaches are needed. Self organization models study the phenomenology that is derived from very simple feedback loops, felt to represent the essence of the nearshore system and implemented by sets of rules. Top down modeling examines long time series of field data to extract empirically the basic physics required to explain the observed phenomenology. Merging the results of these approaches will facilitate progress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abarbanel, H. D. I. (1995) Analysis of observed chaotic data. Springer-Verlag, New York, 272 pp

    Google Scholar 

  2. Barcilon, A. I., Lau, J. P. (1973) A model for the formation of transverse bars. J. Geophys. Res. 78, 2656–2664

    Google Scholar 

  3. Boczar-karakiewicz, B., Davidson-Arnott, R. G. D. (1987) Nearshore bar formation by non-linear wave processes — A comparison of model results and field data. Marine Geology 77, 287–304

    Article  Google Scholar 

  4. Bowen, A. J. (1969) Rip currents, 1. Theoretical investigations. J. Geophys. Res. 74, 5467–5478

    Article  Google Scholar 

  5. Bowen, A. J. (1980) Simple models of nearshore sedimentation; beach profiles and longshore bars. In: McCann S.B. (ed) The Coastline of Canada, Geological Survey of Canada, 1–11

    Google Scholar 

  6. Carter, T. G., Liu, P. L., Mei, C. C. (1973) Mass transport by waves and offshore sand bedforms. Journal of the Waterways, Harbors and Coastal Engineering Division, WW2, 165–184

    Google Scholar 

  7. Falques, A. (1991) A note on the Barcilon and Lau model for transverse bars. Review de Geofisica 47, 191–195

    Google Scholar 

  8. Guza, R. T., Inman, D. L. (1975) Edge waves and beach cusps. J. Geophys. Res. 80, 2997–3012

    Article  Google Scholar 

  9. Guza, R. T., Thornton, E. B. (1982) Swash oscillations on a natural beach. J. Geophys. Res. 87, 483–491

    Article  Google Scholar 

  10. Holland, K. T., Holman, R. A. (1996) Field observations of beach cusps and swash motions. Mar. Geol. 134, 77–93

    Article  Google Scholar 

  11. Holland, K. T., Holman, R. A. (1999) Wavenumber-frequency structure of infragravity swash motions. J. Geophys. Res. 106 (C6), 13479–13488

    Article  Google Scholar 

  12. Holman, R. A., Sallenger, A. H., Jr. (1985) Setup and swash on a natural beach. J. Geophys. Res. 90 (Cl), 945–953

    Google Scholar 

  13. Howd, P. A., Oltman-Shay, J, Holman, R. A. (1991) Wave variance partitioning in the trough of a barred beach. J. Geophys. Res. 96 (C7), 12,781–12, 795

    Google Scholar 

  14. Inman, D. L. (1957) Wave-generated ripples in nearshore sands. U.S. Army Corps of Engineers, Beach Erosion Board, 66 pp

    Google Scholar 

  15. Kennedy, J. F. (1963) The mechanics of dunes and antidunes in erodible-bed channels. J. Fluid Mech. 16, 521–544

    Article  Google Scholar 

  16. Komar, P. D. (1974) Oscillatory ripple marks and the evaluation of ancient wave conditions and environments. J. Sediment. Petrol. 44, 169–180

    Google Scholar 

  17. Komar, P. D. (1976) Beach Processes and Sedimentation. Prentice-Hall, Englewood Cliffs, NJ, 429 pp

    Google Scholar 

  18. Konicki, K. M., Holman R. A. (in review) Transverse sand bars in the nearshore. Mar. Geol.

    Google Scholar 

  19. Miche, R. (1951) Le pouvoir réfléchissant desouvrages maritimes exposés à l’action de la houle. Ann. Ponts Chaussees 121, 285–319

    Google Scholar 

  20. Neidoroda, A. W., Tanner, W. F. (1970) Preliminary study of transverse bars. Mar. Geol. 9, 41–62

    Article  Google Scholar 

  21. Philander, S. G. (1990) El Nino. La Nina and the Southern Oscillation. Academic Press, San Diego

    Google Scholar 

  22. Plant, N. G., Holman, R. A., Freilich, M. H. (in press): A simple model for interannual sand bar behavior. J. Geophys. Res.

    Google Scholar 

  23. Ranasinghe, R., Symonds. G., Holman, R. A. (in review) Rip spacing and persistence on a swell dominated beach. J Geophys. Res.

    Google Scholar 

  24. Short, A. D. (1975) Multiple offshore bars and standing waves. J. Geophys. Res. 80, 3838–3840

    Article  Google Scholar 

  25. Traykovski, P., Hay, A. E., Irish, J. D., Lynch, J. F. (1999) Geometry, migration and evolution of wave orbital ripples at LEO-15. J. Geophys. Res. 104 (C1), 1505–1524

    Article  Google Scholar 

  26. Werner, B. T., Fink, T.M. (1993) Beach cusps as self-organized patterns. Science 260, 968–971

    Article  Google Scholar 

  27. Wijnberg, K. M., Holman, R. A. (in review) Shoreward propagating accretionary waves in the nearshore. J. Geophys. Res.

    Google Scholar 

  28. Wijnberg, K. M., Terwindt, J. H. J. (1995) Extracting decadal morphological behavior from high-resolution, long-term bathymetric surveys along the Holland coast using eigenfunction analysis. Mar. Geol. 126, 301–330

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Holman, R. (2001). Pattern Formation in the Nearshore. In: Seminara, G., Blondeaux, P. (eds) River, Coastal and Estuarine Morphodynamics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04571-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04571-8_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07530-8

  • Online ISBN: 978-3-662-04571-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics