Skip to main content

The Use of Numerical Models in Coastal Hydrodynamics and Morphology

  • Chapter
River, Coastal and Estuarine Morphodynamics

Abstract

Morphodynamics is a complicated field where the interaction between the flow and an erodible bed is studied. Because the bottom changes with time due to erosion or sedimentation, the flow pattern changes correspondingly. This means that a theoretical study of the morphological development of a specific case usually requires not only one flow calculation, but a large number of calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, J. S., Newberger, P. A. and Holman, R. A. (1996) Non-linear shear instabilities of alongshore currents on plane beaches. J. Fluid Mechanics, Vol. 310, pp. 181–213.

    Article  Google Scholar 

  2. Andersen, K. H. (1999) The Dynamics of Ripples Beneath Surface Waves. Ph.D. Thesis, Centre for Chaos and Turbulence Studies, The Niels Bohr Institute, Univ. of Copenhagen and Department of Hydrodynamics and Water Resources, ISVA, Techn. Univ. Denmark.

    Google Scholar 

  3. Andersen, K. H. and Fredsoe, J. (2000) The modelling of fully developed wave generated ripples. Paper in preparation.

    Google Scholar 

  4. Arcilla, A. S., Roelvink, J. A., O’Conner, B. A., Reniers, A. and Jimenez, J. A. (1994) The Delta Flume ‘83 experiment. Proc. ASCE Conf. on Coastal Dynamics, Barcelona, pp. 488–502.

    Google Scholar 

  5. Aydin, I. (1987) Computation and analysis of unsteady turbulent flow on a flat bottom and over rigid ripples. Ph.D. Thesis, Tohuku University.

    Google Scholar 

  6. Bagnold, R.A. (1946) Motion of waves in shallow water, interaction between waves and sand bottoms. Proc. Roy. Soc. of London, A187: 1–15.

    Google Scholar 

  7. Battjes, J. A. (1988) Surf-zone dynamics. Annual Rev. of Fluid Mechanics, Vol. 20, pp. 257–293.

    Article  Google Scholar 

  8. Blondeaux, P. and Vittori, G. (1999) Boundary layer and sediment dynamics under sea waves. Advances in Coastal and Ocean Engineering, Editor Philip L.-F. Liu, World Scientific Publishing, 4,pp: 133–190.

    Google Scholar 

  9. Bowen, A. J. and Holman, R. A. (1989) Shear instabilities of the mean longshore current, 1 theory. J. Geophys. Res., Vol. 94, pp. 18023–18030.

    Article  Google Scholar 

  10. Bruun, P. (1954) Coast erosion and the development of beach profiles. US Army Corps of Engineers, Beach Erosion Board, Tech. Memo No. 44.

    Google Scholar 

  11. Christensen, E.D., Deigaard, R. and Fredsoe, J. (1994) Sea bed stability on a long straight coast. Proc. 24th Coastal Eng. Conf., ASCE, Kobe, pp. 1865–1879.

    Google Scholar 

  12. Dally, W. R. and Dean, R. G. (1984) Suspended sediment transport and beach profile evolution. J. Waterway, Port, Coastal and Ocean Eng., ASCE, Vol. 110 (1), pp. 15–33.

    Article  Google Scholar 

  13. Dean, R. G. (1977) Equilibrium beach profiles: U. S. Atlantic and Gulf Coasts. Dept of Civil Engineering, Ocean Engineering Report No. 12, Univ. of Delaware, 45 pp.

    Google Scholar 

  14. Deigaard, R. (1989) Mathematical modelling of waves in the surf zone. ISVA (Inst. of Hydrodynamics and Hydraulic Engineering), Tech. Univ. of Denmark, Progress rep. No. 69, pp. 47–59.

    Google Scholar 

  15. Deigaard, R. (1993) A note on the three-dimensional shear stress distribution in a surf zone. Coastal Engineering, Vol. 20, pp. 157–171.

    Article  Google Scholar 

  16. Deigaard, R., Christensen, E. D., Damgaard, J. S. and Fredsoe, J. (1994) Numerical simulation of finite amplitude shear waves. Proc. 24th Int. Conf. on Coastal Engineering, ASCE, Kobe, pp. 1919–1933.

    Google Scholar 

  17. Deigaard, R., Dronen, N., Fredsoe, J., Jensen, J. H. and Jorgensen, M. P. (1999) A morphology stability analysis for a long straight barred coast. Coastal Engineering, Vol. 36, pp. 171–195.

    Article  Google Scholar 

  18. Deigaard, R. and Fredsoe, J. (1989) Shear stress distribution in dissipative water waves. Coastal Engineering, Vol. 13, pp. 357–378. 90 Rolf Deigaard and Jurgen Fredsoe

    Google Scholar 

  19. Deigaard, R., Fredsoe, J. and Broker Hedegaard, I. (1986) Suspended sediment in the surf zone. J. Waterway, Port, Coastal and Ocean Eng., ASCE, Vol. 112 (1), pp. 115–128.

    Article  Google Scholar 

  20. Dette, H. and Ulizcka, K. (1986) Velocity and sediment concentration fields across surf zones. Proc. 20th Int. Conf. on Coastal Engineering, ASCE, Taipei, pp. 1062–1076.

    Google Scholar 

  21. Dodd, N., Iranzo, V. and Reniers, A. J. H. M. (1999) Shear instabilities of wave-driven alongshore currents (Shear waves: A review of fluctuations in the surf zone currents). Rev. Geophys., in press.

    Google Scholar 

  22. Dodd, N. and Thornton, E. B. (1992) Longshore current instabilities: growth to finite amplitude. Proc. 23rd Int. Conf. on Coastal Engineering, ASCE, Venice, pp. 2655–2668.

    Google Scholar 

  23. Dyhr-Nielsen, M. and Sorensen, T. (1970) Sand transport phenomena on coasts with bars.Proc. 12th Int. Conf. on Coastal Engineering, ASCE, pp. 1062–1076.

    Google Scholar 

  24. Engelund, F. A. and Fredsoe, J. (1976) A sediment transport model for straight alluvial channels. Nordic Hydrology, Vol. 7, pp. 293–306.

    Google Scholar 

  25. Falqués, A. and Iranzo, V. (1994) Numerical simulation of vorticity waves in the nearshore. J. Geophys. Res., Vol. 99, pp. 825–841.

    Article  Google Scholar 

  26. Falqués, A., Iranzo, V. and Caballera, M. (1994) Shear instability of long-shore currents: effects of dissipation and non-linearity. Proc. 24th Int. Conf. on Coastal Engineering, ASCE, Kobe, pp. 1983–1997.

    Google Scholar 

  27. Falqués, A., Montoto, A. and Iranzo, V. (1996) Bed-flow instability of the longshore current. Continental Shelf Res., Vol. 16, No. 15, pp. 1927–1964.

    Article  Google Scholar 

  28. Foti, E. and Blondeaux, P. (1995) Sea ripple formation: The turbulent boundary layer case. Coastal Engineering, Vol. 25, pp. 227–236.

    Article  Google Scholar 

  29. Fredsoe, J. (1984) Turbulent boundary layers in wave-current motion. J. Hydraulic Eng., ASCE, Vol. 110 (HY8), pp. 1103–1120.

    Article  Google Scholar 

  30. Fredsoe, J., Andersen, O. H. and Silberg, S. (1985) Distribution of suspended sediment in large waves. J. Waterway, Port, Coastal and Ocean Eng., ASCE, Vol. 111 (6), pp. 1041–1059.

    Article  Google Scholar 

  31. Fredsoe, J., Andersen, K.H. and Sumer, B.M. (1999) Wave plus current over a ripple-covered bed. Coastal Engineering, Vol. 38 (4), pp. 177–221.

    Article  Google Scholar 

  32. Fredsoe, J. and Broker, I.H. (1983) Shape of oscillatory sand ripples. Progress Report, No. 58, Inst. of Hydrodynamics and Hydraulic Engineering, ISVA, Techn. Univ. Denmark, pp. 19–29.

    Google Scholar 

  33. Hansen, E.A., Fredsoe, J. and Deigaard, R. (1994) Distribution of suspended sediment over wave-generated ripples. J. Waterway, Port, Coastal and Ocean Engineering, Vol. 120 (1), pp. 37–55.

    Article  Google Scholar 

  34. Hino, M. (1974) Theory on the formation of rip-current and cuspidal coast. Proc. 14th Coastal Eng. Conf., ASCE, Copenhagen, pp. 901–919.

    Google Scholar 

  35. Kraus, N. G. and Larson, M. (1988) Prediction of initial profile adjustment of nourished beaches to wave action. Proc. Beach Technology ‘88, Florida Shore and Beach Preservation Association, pp. 125–137.

    Google Scholar 

  36. Kraus, N. G., Smith, J. M. and Sollitt, C. K. (1992) SUPERTANK Laboratory data collection project. Proc. 23rd Int. Conf. on Coastal Engineering, ASCE, Venice, pp. 2191–2204.

    Google Scholar 

  37. Larson, M. and Kraus, N. G. (1992) Analysis of cross-shore movement of natural longshore bars and material placed to create longshore bars. Dredging Res. Program, Tech. Report DRP-92–5, US Army Corps of Engineers. 4 The Use of Numerical Models 91

    Google Scholar 

  38. Leonard, B.P. (1979) A stable and accurate convection modelling procedure on quadratic upstream interpolation. Computer Methods in Applied Mechanics and Engineering, Vol. 19, pp. 59–98.

    Article  Google Scholar 

  39. Lippman, T.C. and Holman, R.A. (1990) The spatial and temporal variability of sand bar morphology. J Geophys. Res., Vol. 95, No. C7, pp. 11575–11590.

    Google Scholar 

  40. Lyne, W.H. (1971) Unsteady viscous flow over a wavy wall. J. Fluid Mech, Vol. 50, pp. 33–48.

    Article  Google Scholar 

  41. Madsen, P. A., Sorensen, O. R. and Schaffer, H. A. (1997) Surf zone dynamics simulated by a Boussinesq type model, Part I, Model description and cross-shore motion of regular waves. Coastal Engineering. Vol. 32, pp. 255–287.

    Article  Google Scholar 

  42. Madsen, P. A., Sorensen, O. R. and Schaffer, H. A. (1997a) Surf zone dynamics simulated by a Boussinesq type model, Part II, Surf beat and swash oscillations for wave groups and irregular waves. Coastal Engineering. Vol. 32, pp. 289–319.

    Article  Google Scholar 

  43. Miller, R. L. (1976) Role of vortices in surf zone prediction: sedimentation and wave forces. Beach and Nearshore Sedimentation, SEMP Spec. Pub. No. 23, pp. 92–114.

    Google Scholar 

  44. Oltman-Shay, J., Howd, P. A. and Birkemeier, W. A. (1989) Shear instabilities of the mean longshore current, 2 field observations. J. Geophys. Res., Vol. 94, pp. 18031–18042.

    Article  Google Scholar 

  45. Oltman-Shay, J. and Howd, P. A. (1993) Edge waves on nonplanar bathymetry and alongshore currents: a model and data comparison. J. Geophys. Res., Vol. 98, pp. 2495–2507.

    Article  Google Scholar 

  46. Özkan, H. T. and Kirby, J. T. (1995) Finite amplitude shear wave instabilities. Proc. Coastal Dynamics ‘85, ASCE, pp. 465–476.

    Google Scholar 

  47. Ozkan-Haller, H. T. and Kirby, J. T. (1996) Numerical study of low-frequency surf zone motions. Proc. 25th Int. Conf. on Coastal Engineering, ASCE, Orlando, pp. 1361–1374.

    Google Scholar 

  48. Pechon, P. (1992) Numerical modelling of wave-driven currents and sediment transportin the surf zone. Internal Report EDF-LNH HF. 42 /92. 15.

    Google Scholar 

  49. Pedersen, C. (1994) Numerical simulation of sediment transport due to plunging breaking waves. Inst. Hydrodynamics and Hydraulic Engineering (ISVA), Tech. Univ. of Denmark, Series Paper No. 58, 133 pp.

    Google Scholar 

  50. Pedersen, C., Deigaard, R. and Fredsoe, J. (1995) Simulation of sand in plunging breakers. J. Waterway, Port, Coastal and Ocean Eng., ASCE, Vol. 121 (2), pp. 77–87.

    Article  Google Scholar 

  51. Plant, N. G., Holman, R. A., Freilich, M. H. and Birkemeier, W. A. (1999) A simple model for interannual sandbar behavior. J. Geophys. Res, Vol. 104 (C7), pp. 15755–15776.

    Article  Google Scholar 

  52. Putrevu, U. and Svendsen, I. A. (1992) Shear instability of longshore currents: A numerical study. J. Geophys. Res., Vol. 97, pp. 7283–7303.

    Article  Google Scholar 

  53. Rakha, K. A., Deigaard, R. and Broker, I. (1997) A phase resolving cross shore sediment transport model for beach profile evolution. Coastal Engineering, Vol. 31, pp. 231–261.

    Article  Google Scholar 

  54. Reniers, A. J. H. M. and Battjes, J. A. (1996) Cross-shore momentum flux due to shear instabilities. Proc. 25th Int. Conf. on Coastal Engineering, ASCE, Orlando, pp. 175–185.

    Google Scholar 

  55. Reniers, A. J. H. M., Battjes, J. A., Falqués, A. and Huntley, D. A. (1997) Laboratory study on the shear instability of longshore currents. J. Geophys. Res., Vol. 102, pp. 8597–8609. 92 Rolf Deigaard and Jorgen Fredsoe

    Google Scholar 

  56. Roelvink, J. A. and Broker, I. (1993) Cross-shore profile models. Coastal Engineering, Vol. 21, pp. 163–191.

    Article  Google Scholar 

  57. Ruessink, B. G., Houwman, K. T. and Hoekstra, P. (1999) Medium-term frequency distributions of cross-shore suspended sediment transport rates in water depths of 3 to 9 m. Coastal Engineering, Vol. 38, pp. 25–46.

    Article  Google Scholar 

  58. Sancho, F. E. and Svendsen, I. A. (1998) Shear waves over longshore nonuniform barred beaches. Proc. 26th Int. Conf. on Coastal Engineering, ASCE, Copenhagen 1998, pp. 230–243.

    Google Scholar 

  59. Sato, S., Uehara, H. and Watanabe, A. (1986) Numerical simulation of the oscillatory boundary layer flow over ripples by a k-turbulence model. Coastal Engineering, Japan, Vol. 29,pp: 65–78.

    Google Scholar 

  60. Schäffer, H. A., Madsen, P. A. and Deigaard, R. (1993) A Boussinesq model for waves breaking in shallow water. Coastal Engineering, Vol. 20, pp. 185–202

    Article  Google Scholar 

  61. Sleath, J.F.A. (1976) On rolling grain ripples. J. Hydraulic Res., Vol. 14,pp: 69–81.

    Google Scholar 

  62. Sleath, J.F.A. (1984) Sea bed Mechanics, Wiley.

    Google Scholar 

  63. Slinn, D. N., Allen, J. S., Newberger, P. A. and Holman, R. A. (1998) Nonlinear shear instabilities of alongshore currents over barred beaches. J. Geophys. Res., Vol. 103, pp. 18357–18379.

    Article  Google Scholar 

  64. Sonu, C.J. (1972) Field observations of nearshore circulation and meandering currents. J. Geophys Res., Vol. 77, No. 18, pp. 3232–3247.

    Article  Google Scholar 

  65. Stive, M. J. F. and Battjes, J. A. (1984) A model for offshore transport. Proc. 19th Int. Conf. on Coastal Engineering, ASCE, pp. 1420–1436.

    Google Scholar 

  66. Svendsen, I. A. (1984) Mass flux and undertow in a surf zone. Coastal Engineering, Vol. 8, pp. 347–365.

    Article  Google Scholar 

  67. Tsujimoto, G., Hayakawa, N., Ichiyama, M., Fukushima, Y. and Nakamura, Y. (1991) A study on suspended sediment concentration and sediment transport mechanism over rippled sand bed using a turbulence model. Coastal Engineering in Japan, Vol. 34(2),pp: 177–189.

    Google Scholar 

  68. Vittori, G. (1989) Nonlinear viscous oscillatory flow over a small amplitude wavy wall. J. Hydraul. Res., Vol. 27, pp. 267–280.

    Article  Google Scholar 

  69. Vittori, G. and Blondeaux, P. (1990) Sand ripples under sea waves. Part 2. Finite amplitude development. J. Fluid Mech., Vol. 218, pp. 19–39.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Deigaard, R., Fredsøe, J. (2001). The Use of Numerical Models in Coastal Hydrodynamics and Morphology. In: Seminara, G., Blondeaux, P. (eds) River, Coastal and Estuarine Morphodynamics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04571-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04571-8_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07530-8

  • Online ISBN: 978-3-662-04571-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics