Skip to main content

Statistical Analysis of Spatial and Temporal Variations in the Baltic Sea

  • Chapter
A Systems Analysis of the Baltic Sea

Part of the book series: Ecological Studies ((ECOLSTUD,volume 148))

Abstract

Various signs of a changing Baltic Sea (e.g. increased occurrence of green algae blooms in the coastal zone, reduced transparency in the water column and more frequent periods of anoxic conditions in the deeper sub-basins) have made people aware of the vulnerability of the Sea (see e.g. Rosenberg et al. 1990). To restore the Baltic Sea to a pre-eutrophied state, the decision-makers have advocated remedy actions (HELCOM 1991), similar to what successfully has been done for limnic ecosystems. There are, however, several problems with this. The major problem is that the Baltic has a most heterogeneous character. While limnic systems usually are phosphorus limited, the Baltic proper generally has a nitrogen-limited primary production. Phosphorus limitation may be found in the coastal zone and the Bothnian Bay. Only the Bothnian Sea has more balanced conditions in its interior (Granéli et al. 1990). The dominant sources of nitrogen are, in addition, usually of diffusive character, which will obstruct any remedy action.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bergström S, Carlsson B (1995) River runoff to the Baltic Sea: 1950–1990. Ambio 23: 280–287

    Google Scholar 

  • Berryman D, Bobee B, Cluis D, Haemmerli J (1988) Non-parametric tests for trend detection in water quality time series. Water Resour Bull 24: 545–556

    Article  CAS  Google Scholar 

  • Conley DJ, Schelske CL, Stoermer EF (1993) Modification of the biogeochemical cycle of silica with eutrophication. Mar Ecol Prog Ser 101: 179–192

    Article  CAS  Google Scholar 

  • Craigh H, Hayward T (1987) Oxygen supersaturation in the ocean: biological versus physical contributions. Science 235: 199–202

    Article  Google Scholar 

  • Danielsson A (1998) Spatial modeling in sediments. Thesis, Department of Water and Environmental Studies, Linköping University

    Google Scholar 

  • Dugdale RC, Goering JJ (1967) Uptake of new and regenerated forms of nitrogen in primary production. Limnol Oceanogr 12: 196–206

    Article  CAS  Google Scholar 

  • Egge JK, Aksnes DL (1992) Silicate as regulating nutrient in phytoplankton competition. Mar Ecol Prog Ser 83: 281–289

    Article  CAS  Google Scholar 

  • Elmgren R (1989) Man’s impact on the ecosystem of the Baltic Sea: energy flows today and at the turn of the century. Ambio 18: 326–332

    Google Scholar 

  • Eppley RW, Stewart E, Abbott MR, Heyman U (1985) Estimating ocean primary production from satellite chlorophyll. Introduction to regional differences and statistics for southern California. J Plankton Res 7: 57–70

    Google Scholar 

  • Falkowski PG, Wilson C (1992) Phytoplankton productivity in the North Pacific Ocean since 1900 and implications for adsorption of anthropogenic CO2. Nature 358: 741–743

    Article  Google Scholar 

  • Fonselius SH, Szaron J, Öström B (1984) Long-term salinity variations in the Baltic Sea deep water. Rapp P-v Réun Cons Int Explor Mer 185: 140–149

    Google Scholar 

  • Gerlach SA (1994) Oxygen conditions improve when the salinity in the Baltic Sea decreases. Mar Pollut Bull 28: 413–416

    Article  CAS  Google Scholar 

  • Granéli E, Wallström K, Larsson U, Granéli W, Rosenberg R (1990) Nutrient limitation of primary production in the Baltic Sea area. Ambio 19: 142–151

    Google Scholar 

  • HELCOM (1991) The Baltic Sea joint comprehensive programme. Interim report of the HELCOM ad hoc High Level Task Force, August 1991, Helsinki Commission, Helsinki

    Google Scholar 

  • Hipel KW, McLeod AI, Weiler RR (1988) Data analysis of water quality time series in Lake Erie. Water Resour Bull 24: 533–544

    Article  CAS  Google Scholar 

  • Hirsch RM, Slack JR (1984) A nonparametric trend test for seasonal data with serial dependence. Water Resour Res 20: 727–732

    Article  Google Scholar 

  • Hirsch RM, Slack JR, Smith RA (1982) Techniques of trend analysis for monthly water quality data. Water Resour Res 18: 107–121

    Article  Google Scholar 

  • Huber K, Kleine E, Lass H-U, Matthäus W (1994) The major Baltic inflow in January 1993–measurements and modelling results. Dtsch Hydrograf Z 46: 103–114

    Article  Google Scholar 

  • Humborg C, Conley D, Rahm L, Wulff F, Cociasu A, Ittekkot V (1999) Silica retention in river basins: far-reaching effects on biogeochemistry and aquatic food webs in coastal marine environments. Ambio 29: 45–50

    Google Scholar 

  • Larsson U, Elmgren R, Wulff F (1985) Eutrophication and the Baltic Sea. Ambio 14: 9–14

    CAS  Google Scholar 

  • Launiainen J, Pokki J, Vainio J, Niemiaa J, Voipio A (1989) Näkyösyvyyden vaihteluista ja muuttumisesta pohjoisella Itämerellä [Long term changes in the Secchi depth in the northern Baltic Sea] (in Finnish with English Abstract). Proc XIV Geofysiikan Päivät, 3–4 May, Helsinki

    Google Scholar 

  • Matthäus W (1980) Is the Baltic halocline really rising? Ophelia Suppl 1: 157–163

    Google Scholar 

  • Matthäus W (1990) Mixing across the primary Baltic halocline. Beitr Meereskd 6: 21–312

    Google Scholar 

  • Munk-Sörensen H, Nielsen K (1992) Ahus bugt 1990–1991; Hydrografi, närsalter og plankton. Altus Amt, Ahus

    Google Scholar 

  • Rahm L, Danielsson A (1995) Making interlinkages in environmental assessment explicit. Proc 50th Session of International Statistics Institute, pp 199–215

    Google Scholar 

  • Rahm L, Sandén P, Wulff F, Danielsson A (1994) Trends of nitrogen to phosphorus ratios in the Baltic Sea (manuscript )

    Google Scholar 

  • Rahm L, Sandén P, Sturesson L, Danielsson A (1995a) Oxygen saturation trends in the Baltic Sea–problems with statistical inference of marine environmental data. Environ Mon it Assess 35: 13–25

    CAS  Google Scholar 

  • Rahm L, Sandén P, Wulff F, Stälnacke P, Conley D (1995b) A time series analysis of nutrient inputs to the Baltic Sea and changing DSi/N ratios. Mar Ecol Prog Ser 130: 221–228

    Article  Google Scholar 

  • Reckhow KH, Stow C (1989) Monitoring design and data analysis for trend detection. Lake Reservoir Manage 6: 49–60

    Article  Google Scholar 

  • Redfield AC (1934) On the proportions of organic derivatives in sea water and their relation to the composition of plankton. James Johnstone Memorial Volume, Liverpool, pp 177–192

    Google Scholar 

  • Redfield AC, Ketchum BH, Richards FA (1963) The influence of organisms on the composition of seawater. In: Hill MN (ed) The sea, vol 2. Wiley, New York, pp 26–77

    Google Scholar 

  • Rosenberg R, Elmgren R, Fleischer S, Jonsson P, Persson G, Dahlin H (1990) Marine eutrophication case studies in Sweden. Ambio 19: 102–108

    Google Scholar 

  • Sambrotto RN, Savidge G, Robinson C, Boyd P, Takahashi T, Karl DM, Langdon C, Chipman D, Marra J, Codispoti L (1993) Elevated consumption of carbon relative to nitrogen in the surface ocean. Nature 363: 248–250

    Article  CAS  Google Scholar 

  • Sandén P, Rahm L (1993) Nutrient trends in the Baltic Sea. Environmetrics 4: 75–103

    Article  Google Scholar 

  • Sandén P, Häkansson B (1996) Long-term trends in Secchi depth in the Baltic Sea. Limnol Oceartogr 41: 346–351

    Article  Google Scholar 

  • Sandén P, Danielsson A (1995) Spatial properties of nutrient concentrations in the Baltic. Environ Monit Assess 34: 278–307

    Article  Google Scholar 

  • Sandén P, Rahm L, Wulff F (1991) Non-parametric trend test of Baltic Sea data. Environ-metrics 2: 263–278

    Google Scholar 

  • Schelske CL, Stroemer EF (1971) Eutrophication, silica depletion and predicted changes in algal quantity in Lake Michigan. Science 173: 423–424

    Article  PubMed  CAS  Google Scholar 

  • Schulz S (1993) The Baltic Sea on the way to a freshwater lake? Consequences for the Baltic ecosystem. Lecture given at the 13th Baltic Marine Biologists Symp, Riga, 1–4 Sept

    Google Scholar 

  • Smith SV (1991) Stoichiometry of C:N:P fluxes in shallow-water marine ecosystems. In: Cole J, Lovett G, Findlay S (eds) Comparative analyses of ecosystems: patterns, mechanisms and theories. Springer, Berlin Heidelberg New York, pp 259–286

    Google Scholar 

  • Stigebrandt A (1987) A model for the vertical circulation of the Baltic Deep Water. J Phys Oceanogr 17: 1772–1785

    Article  Google Scholar 

  • Stigebrandt A (1991) Computation of oxygen fluxes through the sea surface and the net production of organic matter with application to the Baltic and adjacent seas. Limnol Oceanogr 3: 444–454

    Article  Google Scholar 

  • Stigebrandt A, Wulff F (1987) A model for the dynamics of nutrients and oxygen in the Baltic proper. J Mar Res 45: 729–759

    Article  CAS  Google Scholar 

  • Toompuu A, Wulff F (1995) Spatial large-scale correlations for optimal interpolation of temperature, salinity and nutrient concentrations in the Gulf of Finland. Environment 6: 55–72

    Google Scholar 

  • Trzosinska A (1992) Water transparency in the Polish zone of the Baltic Sea. Oceanologia 33: 203–209

    Google Scholar 

  • van Belle G, Hughes JP (1984) Nonparametric tests for trend in water quality. Water Resour Res 20: 127–136

    Article  Google Scholar 

  • Wulff F, Stigebrandt A (1989) A time-dependent budget model for nutrients in the Baltic Sea. Global Biogeochem Cycles 3: 63–78

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rahm, L., Danielsson, Å. (2001). Statistical Analysis of Spatial and Temporal Variations in the Baltic Sea. In: Wulff, F.V., Rahm, L.A., Larsson, P. (eds) A Systems Analysis of the Baltic Sea. Ecological Studies, vol 148. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04453-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04453-7_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08727-1

  • Online ISBN: 978-3-662-04453-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics