Skip to main content

Part of the book series: Ecological Studies ((ECOLSTUD,volume 148))

Abstract

During recent decades, large-scale effects of pollution on the entire Baltic Sea have become apparent. The prevalence of anoxic deep basins, decreases in the large populations of grey seals and increased frequency of toxic phytoplankton blooms (Horstmann 1975; Kahru et al. 1994) are examples of phenomena governed by large-scale processes. Marine resources, like fish for consumption, are endangered due to overall high levels of toxic substances and overfishing. Measures must be implemented to reduce the loads of pollutant to such levels that the environmental quality of the Baltic is restored. At the same time, the costs of different measures should be weighted against the results achieved (see HELCOM 1991; Wulff and Niemi 1992; Gren et al.1997). Consequently, demand for strong scientific argument increases when international measures need to be motivated (see e.g. Wikner et al. 1996).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Barret K, Tsyro S, Erdman L, Gusev A, Dutchak S, Pekar M, Lükewille A, Krognes T (1998) Atmospheric supply of nitrogen, lead, cadmium, mercury and lindane to the Baltic Sea. EMEP/MSC-W note 3/98. Research Rep no 70. Meteorological Synthesizing Centre-West Norwegian Meteorological Institute, Oslo, Norway

    Google Scholar 

  • Barrow EM (1993) Scenarios of climate change for the European Community. Eur J Agron 2: 247–260

    Google Scholar 

  • Bengtsson B-E, Hill C, Bergman A, Brandt I, Johansson N, Magnhagen C, Södergren A, Thulin J (1999) Reproductive disturbances in Baltic fish: a synopsis of the FIRe project. Ambio 28 (1): 2–8

    Google Scholar 

  • Bianchi, T, Westman P, Rolff C, Engelhaupt E, Andrén T, Elmgren R (2000) Cyanobacterial blooms in the Baltic Sea: natural or human induced? Limnol Oceanogr 45 (3): 716–726

    Article  CAS  Google Scholar 

  • Bignert A, Olsson M, Persson W, Jensen S, Zakrisson S, Litzen K, Eriksson U, Häggberg L, Alsberg T (1998) Temporal trends of organochlorines in northern Europe 1967–1995. Relation to global fractionation, leakage from sediments and international measures. Environ Pollut 99: 177–198

    Article  PubMed  CAS  Google Scholar 

  • Brattberg G (1980) Nitrogen fixation in the marine environment–the Baltic. In: Rosswall T (ed) Processes in the nitrogen cycle (in Swedish). PM 1213, Swedish Environmental Protection Agency, Stockholm, pp 95–103

    Google Scholar 

  • Carman R, Rahm L (1997) Interstitial and bottom water composition of some Baltic proper deep stations. J Sea Res 37: 25–47

    Article  CAS  Google Scholar 

  • Carman R, Aigars J, Danielsson A, Rahm L (2000) Recent paleoecological sediment records of biogenic silica as an indication of the eutrophication in the Baltic Sea (submitted)

    Google Scholar 

  • Elmgren R (1978) Structure and dynamics of Baltic benthos communities, with particular reference to the relationship between macro-and meiofauna. Kieler Meeresforsch Sonderh 4: 1–22

    Google Scholar 

  • Elmgren R, Larsson U (1997) Himmerfjärden. Changes in the nutrient loaded coastal ecosystem of the Baltic Sea (in Swedish). Rep 4565, Swedish Environmental Protection Agency, Stockholm, 197 pp

    Google Scholar 

  • Granéli E, Wallström K, Larsson U, Granéli W, Elmgren R (1990) Nutrient limitation of primary production in the Baltic Sea. Ambio 19: 142–151

    Google Scholar 

  • Gren I-M, Söderqvist T, Wulff F (1997) Nutrient reductions to the Baltic Sea: ecology, costs and benefits. J Environ Manage 51: 123–143

    Article  Google Scholar 

  • HELCOM (1991) The Baltic Sea Joint Comprehensive Programme, interim report of the HELCOM ad hoc High Level Task Force, Helsinki, August 1991

    Google Scholar 

  • HELCOM (1993) The Baltic Sea Joint Comprehensive Environmental Action Programme. Baltic Sea Environ Proc 48, 150 pp

    Google Scholar 

  • HELCOM (1996) Third periodic assessment of the state of the marine environment of the Baltic Sea: 1989–1993; background document. Baltic Sea Environ Proc 64b, 252 pp

    Google Scholar 

  • Hessle C (1924) Bottenboniteringar i inre Östersjön (in Swedish). Medd Kgl Lantbruksstyr 250: 1–52

    Google Scholar 

  • Horstmann U (1975) Eutrophication and mass occurrence of blue-green algae in the Baltic. Merentutkimuslait. Julk/Haysforskningsinst Skr 239: 83–90

    CAS  Google Scholar 

  • Howarth RW, Chan F, Marino R (1999) Do top-down and bottom-up controls interact to exclude nitrogen-fixing cyanobacteria from the plankton of estuaries? An exploration with a simulation model. Biogeochemistry 46 (1): 203–231

    CAS  Google Scholar 

  • Humborg C, Ittekkot V, Cociasu A, von Bodungen B (1997) Effect of Danube River dam on Black Sea biogeochemistry and ecosystem structure. Nature 386: 385–388

    Article  CAS  Google Scholar 

  • Humborg C, Conley D, Rahm L, Wulff F, Cociasu A, Ittekkot, V (2000) Silica retention in river basins: far-reaching effects on biogeochemistry and aquatic food webs in coastal marine environments. Ambio 29 (1): 45–50

    Google Scholar 

  • Jonsson P, Carman R, Wulff F (1990) Laminated sediments in the Baltic Sea–a tool for evaluating nutrient mass balances. Ambio 19: 152–158

    Google Scholar 

  • Kahru M, Horstmann U, Rud 0 (1994) Satellite detection of increased cyanobacteria blooms in the Baltic Sea: natural fluctuations or ecosystem change? Ambio 23: 469–472

    Google Scholar 

  • Kautsky N, Kautsky H, Kautsky U, Waern M (1986) Decreased depth penetration of Fucus vesiculosus (L.) since the 1940s indicates eutrophication of the Baltic Sea. Mar Ecol Prog Res 28 (1): 1–2

    Article  Google Scholar 

  • Löfgren S, Gustafson A, Steineck S, Stälnacke P (1999) Agricultural development and nutrient flows in the Baltic states and Sweden after 1988. Ambio 28 (4): 320–327

    Google Scholar 

  • Rahm L, Jönsson A, Wulff F (2000) Nitrogen fixation in the Baltic proper: an empirical study. J Mar Syst 25: 239–248

    Article  Google Scholar 

  • Redfield AC, Ketchum BH, Richards FA (1963) The influence of organisms on the composition of sea-water. In: Hill N (ed) The sea, vol 2. Interscience, New York, pp 26–77

    Google Scholar 

  • Rosenberg, R, Elmgren R, Fleischer S, Jonsson P, Persson G, Dahlin H (1990) Marine eutrophication case studies in Sweden. Ambio 19: 102–108

    Google Scholar 

  • Winner U (1985) Nitrogen transformations in the Baltic proper: denitrification counteracts eutrophication. Ambio 14: 135–148

    Google Scholar 

  • Savchuk O (2000) Studies of the assimilation capacity and effects of coastal load reductions in the eastern Gulf of Finland with a biogeochemical model. Boreal Environ Res 5: 147–163

    CAS  Google Scholar 

  • Savchuk 0, Wulff F (1999) Modeling regional and large-scale responses of the Baltic Sea ecosystems to nutrient reductions. Hydrobiologia 393: 35–43

    Article  Google Scholar 

  • Schelske CL, Stoermer EF, Conley DJ, Robbins JA, Glover R (1983) Early eutrophication in the lower Great Lakes: new evidence from biogenic silica in sediments. Science 222: 320–322

    Article  PubMed  CAS  Google Scholar 

  • Stâlnacke P (1996) Nutrient loads to the Baltic Sea. Thesis, Linköping University. Linköping Studies Art Sci 146: 78

    Google Scholar 

  • Sweitzer J, Langaas C, Folke C (1996) Land cover and population density in the Baltic Sea drainage basin: a GIS database. Ambio 25 (3): 191–198

    Google Scholar 

  • Tyrrell T (1999) The relative influences of nitrogen and phosphorus on oceanic primary production. Nature 400: 525–531

    Article  CAS  Google Scholar 

  • Wikner J, Tamminen T, Rahm T, Rahm L (1996) Background document for the expert meeting on sensitive/nonsensitive areas for eutrophication in the Baltic Sea caused by nitrogen. EC BETA 4/96, 20/1 annex 3, Helsinki Commission-Baltic Environment Protection Commission, Helsinki, pp 15–40

    Google Scholar 

  • Wulff F, Niemi U (1992) Priorities for the restoration of the Baltic Sea–a scientific perspective. Ambio 21 (2): 193–195

    Google Scholar 

  • Wulff F, Stigebrandt A, Rahm L (1990) Nutrient dynamics of the Baltic Sea. Ambio 29 (3): 126–133

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wulff, F., Rahm, L., Larsson, P. (2001). Introduction. In: Wulff, F.V., Rahm, L.A., Larsson, P. (eds) A Systems Analysis of the Baltic Sea. Ecological Studies, vol 148. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04453-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04453-7_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08727-1

  • Online ISBN: 978-3-662-04453-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics