Skip to main content

Numerical Investigation of Shock Waves in a Radiating Gas Described by a Variable Eddington Factor

  • Chapter
Continuum Mechanics and Applications in Geophysics and the Environment

Abstract

Recently a numerical method suitable for dealing with hyperbolic systems of conservation laws also in the presence of source terms, both in stiff and non-stiff case, has been developed (Liotta et al., 1999a, b). Here we use such a scheme for getting numerical solutions of the shock structure problem for the model of a radiating gas described by a variable Eddington factor (Anile et al., 1991, 1992; Kremer and Müller, 1992) in the framework of extended thermodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alí, G. and Romano, V. 1994. Jump conditions for a radiating relativistic gas. J. Math. Phys., 35, 2878–2901.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Anile, A. M., Nikiforakis, N. and Pidatella, R. M. 1999. Assessment of a high resolution centered scheme for the solution of hydrodynamical semiconductor equations. Preprint.

    Google Scholar 

  3. Anile, A. M., Pennisi, S. and Sammartino, M. 1991. A thermodynamical approach to Eddington factors. J. Math. Phys., 32, 544–550.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Anile, A.M., Pennisi, S. and Sammartino, M. 1992. Covariant radiation hydrodynamics. Ann. Inst. H. Poincaré, 56, 49–74.

    MathSciNet  MATH  Google Scholar 

  5. R. E. Caflish, R. E., Jin, S. and Russo, G. 1997. Uniformly accurate schemes for hyperbolic systems with relaxation. SIAM J. Num. Analysis, 34, 246–281.

    Article  Google Scholar 

  6. Jeffrey, A. 1976. Quasilinear hyperbolic systems and wave. Pitman, New York.

    Google Scholar 

  7. Jou, D., Casas-Vazquez, J. and Lebon, G. 1993. Extended irreversible thermodynamics. Springer, Berlin.

    Book  MATH  Google Scholar 

  8. Kremer, G. M. and Müller, I. 1992. Radiation thermodynamics. J. Math. Phys., 33, 2265–2268.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Leveque, R. J. 1992. Numerical methods for conservation laws. Lectures in Mathematics. Birkhäuser Verlag, Zürich ETH.

    Book  MATH  Google Scholar 

  10. Levermore, C. D. 1984. Relating Eddington factors to flux limiters. J. Quant. Spectrosc. Radiat. Transfer, 31, 149–160.

    Article  ADS  Google Scholar 

  11. Liotta, S. F., Romano, V. and Russo, G. 1999a. Central schemes for systems of balance laws. International Series of Numerical Mathematics, 130, 651–660.

    MathSciNet  Google Scholar 

  12. Liotta, S. F., Romano, V. and Russo, G. 1999b. Central schemes for balance laws of relaxation type. To appear in SIAM J. Numerical Analysis.

    Google Scholar 

  13. Liu, T. P. 1987. Hyperbolic conservation laws with relaxation. Comm. Math. Phys., 108, 153–175.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Mascali, G. and Romano, V. 1997. Maximum entropy principle in relativistic radiation hydrodynamics. Ann. Inst. H. Poincaré, 67, 123–144.

    MathSciNet  MATH  Google Scholar 

  15. Mihalas, D. and Mihalas, B. W. 1984. Foundations of radiation hydrodynamics. Oxford University Press, New York.

    MATH  Google Scholar 

  16. Müller, I. and Ruggeri, T. 1998. Rational extended thermodynamics. Springer, Berlin.

    Book  MATH  Google Scholar 

  17. Nessyahu, H. and Tadmor, E. 1990. Non-oscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys., 87, 408–448.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Romano, V. and Alí, G. 1993. Shock Structure for a Radiating Gas. Series on Advances in Mathematics for Applied Sciences, 23, 301–307.

    Google Scholar 

  19. Struchtrup, H. 1997. An extended moment method in radiative transfer: The matrices of mean absorption and scattering coefficients. Ann. of Physics, 257, 111–135.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Toro, E. F. 1997. Riemann solvers and numerical methods for fluid dynamics. Springer, Berlin.

    MATH  Google Scholar 

  21. Whitam, G. B. 1974. Linear and nonlinear waves. Wiley, New York.

    Google Scholar 

  22. Zel’dovic, Y. B. and Raizer, Y. P. 1967. Physics of shock wave and high-temperature hydrodynamic phenomena. Academic Press, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Anile, A.M., Romano, V. (2001). Numerical Investigation of Shock Waves in a Radiating Gas Described by a Variable Eddington Factor. In: Straughan, B., Greve, R., Ehrentraut, H., Wang, Y. (eds) Continuum Mechanics and Applications in Geophysics and the Environment. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04439-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04439-1_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07500-1

  • Online ISBN: 978-3-662-04439-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics