Skip to main content

Apoptosis, Glial Cells and Parkinson’s Disease

  • Conference paper
Neuronal Death by Accident or by Design

Part of the book series: Research and Perspectives in Neurosciences ((NEUROSCIENCE))

  • 106 Accesses

Summary

The glial reaction is generally considered to be a consequence of neuronal death in neurodegenerative diseases such as Alzheimer’s disease, Hunting-ton’s disease and Parkinson’s disease.

In Parkinson’s disease, postmortem examination reveals that the loss of dopaminergic neruons in the substantia nigra is associated with massive astroglisois and the presence of activated nucriglial cells. Recent evidence suggests that the disease may progress even when the initial cause of neuronal degeneration has diasppeared, implying that toxic subdtances released by glial cells may be involved in neuronal dageneration. Glial cells can release various compounds, including pro-inflammatory cytokines. These substances may act on specific receptors, located on the dopaminergic neurons, that contain intracytoplasmic death domains and are involved in apoptosis. Alternatively, since cytokines are known to induce the expression of nitric oxide via the induction and activation of the low affinity IgE receptor CD23, the gradual release of nitric oxide from glial cells may account for the increased oxidative stress, protein nitration, altered iron homeostasis and blood vessel alterations reported in the disease. In turn, such cellular alterations may provoke the degeneration of dopaminergic neurons. The exact cascade of events leading to neuronal degeneration in Parkinson’s disease is not known but may involve activation of proteases such as caspase-3, which are known effectors of the cascade of events leading to nerve cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Agid Y (1991) Parkinson’s disease: pathophysiology. Lancet (Ed. Française) 337:1311–1324

    Google Scholar 

  • Agid Y, Ruberg M, Javoy-Agid F, Hirsch E, Raisman-Vozari R, Vyas S, Faucheux B, Michel P, Kastner A, Blanchard V, Damier P, Villares J, Ping Zhang (1993) Are dopaminergic neurons selectively vulnerable to Parkinson’s disease? Adv Neurol 60: 148–164

    PubMed  CAS  Google Scholar 

  • Aloe L, Fiore M (1997) TNF-a expressed in the brain of transgenic mice lowers central tyrosine hydroxylase immunoreactiviy and alters grooming behavior. Neurosci Lett 238: 65–68

    Article  PubMed  CAS  Google Scholar 

  • Anglade P, Vyas S, Javoy-Agid F, Herrero MT, Michel PP, Marquez J, Mouatt-Prigent A, Ruberg M, Hirsch EC, Agid Y (1997) Apoptosis and autophagy in nigral neurons of patients with Parkinson’s disease. Histol Histopathol 12: 25–31

    PubMed  CAS  Google Scholar 

  • Arock M, Le Goff L, Bécherel PA, Dugas B, Debré P, Mossalayi MD (1994) Involvement of FcepsillonRII/CD23 and L-arginine dependent pathway in IgE-mediated activation of human eosinophils. Biochem Biophys Res Commun 203: 265–271

    Article  PubMed  CAS  Google Scholar 

  • Baker SJ, Reddy EP (1998) Modulation of life and death by the TNF receptor superfamily. Oncogene 17: 3261–3270

    Article  PubMed  Google Scholar 

  • Boka G, Anglade P, Wallach D, Javoy-Agid F, Agid Y, Hirsch EC (1994) Immunocytochemical analysis of tumor necrosis factor and its receptors in Parkinson’s disease. Neurosci Lett 172: 151154

    Google Scholar 

  • Bronstein DM, Perez-Otano I, Sun V, Mullis Sawin SB, Chan J, Wu GC, Hudson PM, Kong LY, Hong JS, McMillian MK (1995) Glia-dependent neurotoxicity and neuroprotection in mesencephalic cultures. Brain Res 704: 112–116

    Article  PubMed  CAS  Google Scholar 

  • Damier P, Hirsch EC, Zhang P, Agid Y, Javoy-Agid F (1993) Glutathione peroxidase, glial cells and Parkinson’s disease. Neuroscience 52: 1–6

    Article  PubMed  CAS  Google Scholar 

  • Damier P, Hirsch EC, Agid Y, Graybiel AM (1999a) The substantia nigra of the human brain: I. Nigrosomes and the nigral matrix, a compartmental organization based on calbindin D-28K immunohistochemistry. Brain 122: 1421–1436

    Article  PubMed  Google Scholar 

  • Damier P, Hirsch EC, Agid Y, Graybiel AM (1999b) The substantia nigra of the human brain: II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. Brain 122: 1437–1448

    Google Scholar 

  • Dehmer T, Lindenau J, Haid S, Dichgans J, Schulz JB (2000) Deficiency of inducible nitric oxide synthase protects against MPTP toxicity in vivo. J Neurochem 74: 2213–2216

    Article  PubMed  CAS  Google Scholar 

  • Delespesse G, Sutter U, Mossalayi MD, Bettler B, Sarfati M, Hofstetter H, Kilchherr E, Debré P, Dalloul AH (1991) Expression, structure, and function of the CD23 antigen. Adv Immunol 49: 149–191

    Article  PubMed  CAS  Google Scholar 

  • Dugas B, Mossalayi MD, Damais C, Kolb J-P (1995) Nitric oxide production by human monocytes: evidence for a role of CD23. Immunol Today 16: 574–580

    Article  PubMed  CAS  Google Scholar 

  • Good PF, Hsu A, Werner P, Perl DP, Olanow CW (1998) Protein nitration in Parkinson’s disease. J Neuropathol Exp Neurol 57: 338–342

    Article  PubMed  CAS  Google Scholar 

  • Hartmann A, Hunot S, Michel PP, Muriel M-P, Vyas S, Faucheux BA, Mouatt-Prigent A, Turmel E, Evan GI, Agid Y, Hirsch EC (2000) Caspase-3: a vulnerability factor and final effector in apoptotic death of dopaminergic neurons in Parkinson’s disease. Proc Natl Acad Sci 97: 2875–2880

    Article  PubMed  CAS  Google Scholar 

  • Hartmann A, Hirsch EC (2001) Parkinson’s disease: the apoptosis hypothesis revisited. Adv Neurol 86: 143–153

    PubMed  CAS  Google Scholar 

  • Hirsch EC (1993) Does oxidative stress participate in nerve cell death in Parkinson’s disease? Eur Neurol 33: 52–59

    Article  PubMed  Google Scholar 

  • Hirsch EC, Faucheux BA (1998) Iron metabolism and Parkinson’s disease. Mov Disord 13 (S1): 3945

    Google Scholar 

  • Hirsch EC, Graybiel AM, Agid Y (1988) Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson’s disease. Nature 334: 345–348

    Article  PubMed  CAS  Google Scholar 

  • Hunot S, Boissière F, Faucheux B, Brugg B, Mouatt-Prigent A, Agid Y, Hirsch EC (1996) Nitric oxide synthase and neuronal vulnerability in Parkinson’s disease. Neuroscience 72: 355–363

    Article  PubMed  CAS  Google Scholar 

  • Hunot S, Dugas N, Faucheux B, Hartmann A, Tardieu M, Debré P, Agid Y, Dugas B, Hirsch EC (1999) Fc(epsilon)RII/CD23 is expressed in Parkinson’s disease and induces, in vitro, production of nitric oxide and tumor necrosis factor-alpha in glial cells. J Neurosci 19: 3440–3447

    Google Scholar 

  • Jenner P (1996) Oxidative stress in Parkinson’s disease and other neurodegenerative disorders. Pathol Biol 44: 57–64

    PubMed  CAS  Google Scholar 

  • Jenner P (1998) Oxidative mechanisms in nigral cell death in Parkinson’s disease. Mov Disord 13: S24 - S34

    Google Scholar 

  • Jenner P, Olanow CW (1996) Oxidative stress and the pathogenesis of Parkinson’s disease. Neurology 47: S161 - S170

    Article  PubMed  CAS  Google Scholar 

  • Jenner P, Olanow CW (1998) Understanding cell death in Parkinson’s disease. Ann Neurol 44: S72 - S84

    PubMed  CAS  Google Scholar 

  • Juckett M, Zheng Y, Yuan H, Pastor T, Antholine W, Weber M, Vercellotti G (1998) Heme and the endothelium. Effects of nitric oxide on catalytic iron and heme degradation by heme oxygenase. J Biol Chem 273: 288–297

    Google Scholar 

  • Kingsbury AE, Marsden CD, Foster OJ (1998) DNA fragmentation in human substantia nigra: apoptosis or perimortem effect? Mov Disord 13: 877–884

    Article  PubMed  CAS  Google Scholar 

  • Langston JW, Forno LS, Tetrud J, Reeves AG, Kaplan JA, Karluk D (1999) Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure. Ann Neurol 46: 598–605

    Article  PubMed  CAS  Google Scholar 

  • Liberatore GT, Jackson-Lewis V, Vukosavic S, Mandir AS, Vila M, McAuliffe WG, Dawson VL, Dawson TM, Przedborski S (1999) Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson’s disease. Nature Med 5: 1403–1409

    Article  PubMed  CAS  Google Scholar 

  • McGeer PL, Itagaki S, Boyes BE, McGeer EG (1988) Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 38: 1285–1291

    Article  PubMed  CAS  Google Scholar 

  • McNaught KS, Jenner P (1999) Altered glial function causes neuronal death and increases neuronal susceptibility to 1-methyl-4-phenylpyridinium and 6-hydroxydopamine-induced toxicity in astrocytic/ventral mesencephalic co-cultures. J Neurochem 73: 2469–2476

    Article  PubMed  CAS  Google Scholar 

  • Mochizuki H, Goto K, Mori H, Mizuno Y (1996) Histochemical detection of apoptosis in Parkinson’s disease. J Neurol Sci 137: 120–123

    Article  PubMed  CAS  Google Scholar 

  • Mogi M, Harada M, Riederer P, Narabayashi H, Fujita K, Nagatsu T (1994a) Tumor necrosis factor-a ( TNF-a) increases both in the brain and in the cerebrospinal fluid from parkinsonian patients. Neurosci Lett 165: 208–210

    Google Scholar 

  • Mogi M, Harada M, Kondo J, Riederer P, Inagaki H, Minami M, Nagatsu T (1994b) Interleukin-1 ß, interleukin-6, epidermal growth factor and transforming growth factor-a are elevated in the brain from parkinsonian patients. Neurosci Lett 180: 147–150

    Article  PubMed  CAS  Google Scholar 

  • Mogi M, Harada M, Kondo T, Riederer P, Nagatsu T (1996 a) Interleukin-2 but not basic fibroblast growth factor is elevated in parkinsonian brain. J Neural Transm 103: 1077–1081

    Google Scholar 

  • Mogi M, Harada M, Narabayashi H, Inagaki H, Minami M, Nagatsu T (1996b) Interleukin (IL)-1 ß, IL-2, IL-4, IL-6 and transforming growth factor-a levels are elevated in ventricular cerebrospinal fluid in juvenile parkinsonism and Parkinson’s disease. Neurosci Lett 211: 13–16

    Article  PubMed  CAS  Google Scholar 

  • Mossalayi MD, Paul-Eugène N, Ouaaz F, Arock M, Kolb J-P, Kilchherr E, Debré P, Dugas B (1994) Involvement of FcepsilonRll/CD23 and L-arginine-dependent pathway in IgE-mediated stimulation of human monocyte functions. Int Immunol 6: 931–934

    Article  PubMed  CAS  Google Scholar 

  • Nicotera P, Leist M, Fava E, Berliocchi L, Volbracht C (2000) Energy requirement for caspase activation and neuronal cell death. Brain Pathol 10: 276–282

    Article  PubMed  CAS  Google Scholar 

  • Olanow CW (1992) An introduction of the free radical hypothesis in Parkinson’s disease. Ann Neurol 32: S2 - S9

    Article  PubMed  CAS  Google Scholar 

  • Olanow CW (1997) Attempts to obtain neuroprotection in Parkinson’s disease. Neurology 49: S26 - S33

    Article  PubMed  CAS  Google Scholar 

  • Owen AD, Schapira AH, Jenner P, Marsden CD (1996) Oxidative stress and Parkinson’s disease. Ann NY Acad Sci 786: 217–223

    Article  PubMed  CAS  Google Scholar 

  • Przedborski S, Jackson-Lewis V (1998) Experimental developments in movement disorders: update on proposed free radical mechanisms. Curr Opin Neurol 11: 335–339

    Article  PubMed  CAS  Google Scholar 

  • Qureshi GA, Baig S, Bednar I, Sodersten P, Forsberg G, Siden A (1995) Increased cerebrospinal fluid concentration of nitrite in Parkinson’s disease. NeuroReport 6: 1642–1644

    CAS  Google Scholar 

  • Tatton NA, Maclean-Fraser A, Tatton WGPDP, Olanow CW (1998) A fluorescent double-labeling method to detect and confirm apoptotic nuclei in Parkinson’s disease. Ann Neurol 44:5142S148

    Google Scholar 

  • Tompkins MM, Basgall EJ, Zamrini E, Hill WD (1997) Apoptotic-like changes in Lewy-body-asso- ciated disorders and normal aging in substantia nigral neurons. Am J Pathol 150: 119–131

    PubMed  CAS  Google Scholar 

  • Turmel H, Hartmann A, Parain K, Douhou A, Srinivasan A, Agid Y, Hirsch EC (2001) Caspase-3 activation in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine ( MPTP)-treated mice. Mov Disord 16: 185–189

    Google Scholar 

  • Vandenabeele P, Declercq W, Beyaert R, Fiers W (1994) Two tumor necrosis factor receptors: structure and function. Trends Cell Biol 5: 392–399

    Article  Google Scholar 

  • Werth JL, Deshmukh M, Cocabo J, Johnson EM Jr, Rothman SM (2000) Reversible physiological alterations in sympathetic neurons deprived of NGF but protected from apoptosis by caspase inhibition or Bax deletion. Exp Neurol 161: 203–211

    Article  PubMed  CAS  Google Scholar 

  • Wullner U, Kornhuber J, Weller M, Schulz JB, Loschmann PA, Riederer P, Klockgether T (1999) Cell death and apoptosis regulating proteins in Parkinson’s disease: a cautionary note. Acta Neuropathol (Berl) 97: 408–412

    Article  CAS  Google Scholar 

  • Youdim MB, Ben Shachar D, Riederer P (1993) The possible role of iron in the etiopathology of Parkinson’s disease. Mov Disord 8: 1–12

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hirsch, E.C. (2001). Apoptosis, Glial Cells and Parkinson’s Disease. In: Henderson, C.E., Green, D.R., Mariani, J., Christen, Y. (eds) Neuronal Death by Accident or by Design. Research and Perspectives in Neurosciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04333-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04333-2_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07517-9

  • Online ISBN: 978-3-662-04333-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics