Skip to main content

Mechanisms of Neuronal Death: An in vivo Study in the Lurcher Mutant Mice

  • Conference paper
Neuronal Death by Accident or by Design

Part of the book series: Research and Perspectives in Neurosciences ((NEUROSCIENCE))

Summary

Lurcher is a gain-of-function point mutation located in the gene encoding the δ 2 subunit of glutamate receptors (GRID2). The Lurcher mutation is lethal when homozygous. Heterozygous mice are ataxic due to a massive neuronal loss in their cerebellum. Lurcher Purkinje cells expressing the mutated allele are depolarized and die from the second postnatal week onwards, suggesting an excitotoxic process. Target-related cell death affects more than 90% of granule cells and 60–75% of olivary neurons, the two Purkinje cell afferences.

Thus, the Lurcher heterozygous mouse is an ideal model to study in vivo the mechanism of two types of neuronal death: an excitotoxicity-like process and target-related neuronal death. The timing of Purkinje cell death onset in Lurcher mice, around P10, is concomitant with the beginning of synaptogenesis between parallel fiber and Purkinje cell, suggesting a potential role of granule cell-Purkinje cell interaction in the timing of Purkinje cell death. X-irradiation of Lurcher mice during granule cell genesis is a means to reduce granule cell number. In these mice, Purkinje cells degenerate with the same timing as in Lurcher controls, suggesting that granule cells do not influence this process although they differentiate surprisingly better than in non-irradiated mutants.

The molecular cascade leading to apoptosis, a particular type of cell death, has been well defined, especially in vitro. Two families of proteins have an essential role in the regulation of apoptosis: the Bcl-2 family and the caspases. TUNEL-labeling studies have suggested the involvement of apoptosis in both types of neuronal death affecting the Lurcher nervous system.

The caspases are structurally similar cystein proteases that cleave their substrates specifically after an aspartate residue. They are synthesized as a precursor that is activated by cleavage, resulting in the formation of a large and a small subunit. Two heterodimers then associate to form the final active protease. Three categories of caspases can be distinguished by the specificity of their substrate cleavage site: caspases generating mature proinflammatory cytokines (caspase-1, -4, -5), effector caspases (caspase-2, -3, -7 and CED3) and initiator caspases (caspase-6, -8, -9) of apoptosis. The analysis of caspase-3 expression has shown an up-regulation of pro-caspase-3 in 25% of Purkinje cells of Lurcher mice. Activation of this caspase was also detected in 1–3% of these cells, as was TUNEL labeling. Dying granule cells and olivary neurons also contained activated caspase-3. These results further suggest the involvement of an apoptotic process in the two types of neuronal death occurring in Lurcher mice.

The Bcl-2 family contains both pro- and anti-apoptotic members. Overexpression of the anti-apoptotic protein Bcl-2 in Lurcher mice does not rescue Purkinje cells but is able to delay this process, as Purkinje cells can still be found in two-month-old Lurcher mice overexpressing Bcl-2. We further analyzed the involvement of the Bcl-2 family by studying the role of the proapoptotic protein Bax. Bax up-regulation has been shown in both Purkinje cells and granule cells in Lurcher mice. To analyze the effect of Bax inactivation, we generated double-mutants, i.e. Bax knock-out Lurcher mice. One-month-old animals had a 40% increase in granule cell number. This increase was still observed in two-month-old animals, showing that Bax inactivation persistently inhibited the target-related death of granule cells. However, olivary neuron degeneration was not prevented in Bax knock-out Lurcher mice, showing that Bax involvement in target-related cell death depends on the neuronal population. In one-month-old animals, Purkinje cell number was the same in Bax knock-out Lurcher mice and in Lurcher controls. However, an increased number of Purkinje cells is detected in P15 Bax knock-out Lurcher mice. Thus, Bax inactivation is not sufficient to inhibit Purkinje cell death induced by the Lurcher mutation, but it is able to delay this process for a short period. In the Bax knock-out Lurcher mice, caspase-3 activation is inhibited in both Purkinje cells and granule cells, whereas pro-caspase-3 up-regulation in Purkinje cells is not influenced. Granule cell rescue in this model can be correlated to the inhibition of caspase-3 activation. Interestingly, the inhibition of caspase-3 activation is not sufficient to rescue Purkinje cells, suggesting that another pathway, for example another caspase or a caspase-independent mechanism, is able to mediate Lurcher Purkinje cell death.

The study of Lurcher mice highlights the point that different pathways underlie neuronal death depending on the death stimuli and also on the neuronal population. Different proteins in granule cells and olivary neurons mediate target-related neuronal death. Moreover, Lurcher Purkinje cells express different apoptosis-inducing molecules, activated caspase-3 and Bax, but are not rescued by their inhibition, suggesting that in one cell type several pathways of cell death can be induced by one stimulus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adams JM, Cory S (1998) The Bd-2 protein family: arbiters of cell survival. Science 281: 1322–1326

    Article  PubMed  CAS  Google Scholar 

  • Allsopp TE, Wyatt S, Paterson HF, Davies AM (1993) The proto-oncogene bd-2 can selectively rescue neurotrophic factor-dependent neurons from apoptosis. Cell 73: 295–307

    Article  PubMed  CAS  Google Scholar 

  • Antonsson B, Conti F, Ciavatta A, Montessuit S, Lewis S, Martinou I, Bernasconi L, Bernard A, Mermod JJ, Mazzei G, Maundrell K, Gambale F, Sadoul R, Martinou JC (1997) Inhibition of Bax channel-forming activity by Bc1–2. Science 277: 370–372

    Article  PubMed  CAS  Google Scholar 

  • Araki K, Meguro H, Kushiya E, Takayama C, Inoue Y, Mishina M (1993) Selective expression of the glutamate receptor channel delta 2 subunit in cerebellar Purkinje cells. Biochem Biophys Res Commun 197: 1267–1276

    Article  PubMed  CAS  Google Scholar 

  • Bailly Y, Kyriakopoulou K, Delhaye-Bouchaud N, Mariani J, Karagogeos D (1996) Cerebellar granule cell differentiation in mutant and X-irradiated rodents revealed by the neural adhesion molecule TAG-1. J Comp Neurol 369: 150–161

    Article  PubMed  CAS  Google Scholar 

  • Batistatou A, Merry DE, Korsmeyer SJ„ Greene LA (1993) Bd-2 affects survival but not neuronal differentiation of PC12 cells. J Neurosci 13 (10): 4422–4428

    PubMed  CAS  Google Scholar 

  • Bonfanti L, Strettoi E, Chierzi S, Cenni MC, Liu XH, Martinou JC, Maffei L, Rabacchi SA (1996) Protection of retinal ganglion cells from natural and axotomy-induced cell death in neonatal transgenic mice overexpressing bd-2. J Neurosci 16: 4186–4194

    PubMed  CAS  Google Scholar 

  • Caddy KW, Biscoe TJ (1979) Structural and quantitative studies on the normal C3H and Lurcher mutant mouse. Phil Trans R Soc Lond B Biol Sci 287: 167–201

    Article  CAS  Google Scholar 

  • Chen J, Nagayama T, Jin K, Stetler RA, Zhu RL, Graham SH, Simon RP (1998) Induction of caspase-3-like protease may mediate delayed neuronal death in the hippocampus after transient cerebral ischemia. J Neurosci 18: 4914–4928

    PubMed  CAS  Google Scholar 

  • Chu T, Hullinger H, Schilling K, Oberdick J (2000) Spatial and temporal changes in natural and target deprivation-induced cell death in the mouse inferior olive. J Neurobiol 43: 18–30

    Article  PubMed  CAS  Google Scholar 

  • Cregan SP, MacLaurin JG, Craig CG, Robertson GS, Nicholson DW, Park DS, Slack RS (1999) Baxdependent caspase-3 activation is a key determinant in p53-induced apoptosis in neurons. J Neursci 19: 7860–7869

    CAS  Google Scholar 

  • de Bilbao F, Dubois-Dauphin M (1996) Time course of axotomy-induced apoptotic cell death in facial motoneurons of neonatal wild type and bd-2 transgenic mice. Neuroscience 71: 1111–1119

    Article  PubMed  Google Scholar 

  • de Bilbao F, Guarin E, Nef P, Vallet P, Giannakopoulos P, Dubois-Dauphin M (1999) Postnatal distribution of cpp32/caspase-3 mRNA in the mouse central nervous system: an in situ hybridization study. J Comp Neurol 409: 339–357

    Article  PubMed  Google Scholar 

  • Deckwerth TL, Elliott JL, Knudson CM, Johnson EM Jr, Snider WD, Korsmeyer SJ (1996) BAX is required for neuronal death after trophic factor deprivation and during development. Neuron 17: 401–411

    Article  PubMed  CAS  Google Scholar 

  • De Jager PL, Heintz N (1998) The lurcher mutation and ionotropic glutamate receptors: contributions to programmed neuronal death in vivo. Brain Pathol 8: 795–807

    Article  PubMed  Google Scholar 

  • Desagher S, Osen-Sand A, Nichols A, Eskes R, Montessuit S, Lauper S, Maundrell K, Antonsson B, Martinou JC (1999) Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis. J Cell Biol 144: 891–901

    Article  PubMed  CAS  Google Scholar 

  • Doughty ML, Lohof A, Selimi F, Delhaye-Bouchaud N, Mariani J (1999) Afferent-target cell interactions in the cerebellum: negative effect of granule cells on Purkinje cell development in lurcher mice. J Neurosci 19: 3448–3456

    PubMed  CAS  Google Scholar 

  • Doughty ML, De Jager PL, Korsmeyer SJ, Heintz N (2000) Neurodegeneration in lurcher mice occurs via multiple cell death pathways [In Process Citation]. J Neurosci 20: 3687–3694

    PubMed  CAS  Google Scholar 

  • Du Y, Dodel RC, Bales KR, Jemmerson R, Hamilton-Byrd E, Paul SM (1997) Involvement of a caspase-3-like cysteine protease in 1-methyl-4-phenylpyridinium-mediated apoptosis of cultured cerebellar granule neurons. J Neurochem 69: 1382–1388

    Article  PubMed  CAS  Google Scholar 

  • Dubois-Dauphin M, Frankowski H, Tsujimoto Y, Huarte Y, Martinou J-C (1994) Neonatal moto-neurons overexpressing the bcl-2 proto-oncogene in transgenic mice are protected from axotomy-induced cell death. Proc Natl Acad Sci USA 91: 3309–3313

    Article  PubMed  CAS  Google Scholar 

  • Dumesnil-Bousez N, Sotelo C (1992) Early development of the Lurcher cerebellum: Purkinje cell alterations and impairment of synaptogenesis. J Neurocytol 21: 506–529

    Article  PubMed  CAS  Google Scholar 

  • Farlie PG, Dringen R, Rees SM, Kannourakis G, Bernard 0 (1995) bd-2 transgene expression can protect neurons against developmental and induced cell death. Proc Natl Acad Sci USA 92: 4397–4401

    Google Scholar 

  • Fernandes-Alnemri T, Litwack G, Alnemri ES (1994) CPP32, a novel human apoptotic protein with homology to Caenorhabditis elegans cell death protein Ced-3 and mammalian interleukin-lßconverting enzyme. J Biol Chem 269: 30761–30764

    PubMed  CAS  Google Scholar 

  • Fu XY (1999) From PTK-STAT signaling to caspase expression and apoptosis induction [see comments]. Cell Death Differ 6: 1201–1208

    Article  PubMed  CAS  Google Scholar 

  • Garcia I, Martinou I, Tsujimoto Y, Martinou J (1992) Prevention of programmed cell death of sympathetic neurons by the bc1–2 proto-oncogene. Science 258: 302–304

    Article  PubMed  CAS  Google Scholar 

  • Giovanni A, Keramaris E, Morris EJ, Hou ST, O’Hare M, Dyson N, Robertson GS, Slack RS, Park DS (2000) E2F1 mediates death of ß-amyloid-treated cortical neurons in a manner independent of p53 and dependent on bax and caspase-3. J Biol Chem 275: 11553–11560

    Article  PubMed  CAS  Google Scholar 

  • Green DR, Kroemer G (1998) The central executioners of apoptosis: caspases or mitochondria? Trends Cell Biol 8: 267–271

    Article  PubMed  CAS  Google Scholar 

  • Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281 (5381): 1309–1312

    Article  PubMed  CAS  Google Scholar 

  • Gross A, McDonnell JM, Korsmeyer SJ (1999) BCL-2 family members and the mitochondria in apoptosis. Genes Dev 13: 1899–1911

    Article  PubMed  CAS  Google Scholar 

  • Heckroth JA, Eisenman LM (1991) Olivary morphology and olivocerebellar topography in adult lurcher mutant mice. J Comp Neurol 312: 641–651

    Article  PubMed  CAS  Google Scholar 

  • Hendry IA (1976) A method to correct adequately for the change in neuronal size when estimating neuronal numbers after growth factor treatment. J Neurocytol 5: 337–349

    Article  PubMed  CAS  Google Scholar 

  • Herrup K, Busser JC (1995) The induction of multiple cell cycle events precedes target-related neuronal death. Development 121: 2385–2395

    PubMed  CAS  Google Scholar 

  • Herrup K, Shojaeian-Zanjani H, Panzini L, Sunter K, Mariani J (1996) The numerical matching of source and target populations in the CNS: the inferior olive to Purkinje cell projection. Brain Res Dev Brain Res 96: 28–35

    Article  PubMed  CAS  Google Scholar 

  • Hughes PE, Alexi T, Schreiber SS (1997) A role for the tumour suppressor gene p53 in regulating neuronal apoptosis. Neuroreport 8:V-XII

    Google Scholar 

  • Ichimiya M, Chang SH, Liu H, Berezesky IK, Trump BF, Amstad PA (1998) Effect of Bd-2 on oxidant-induced cell death and intracellular Cat+ mobilization. Am J Physiol 275 (3 Pt 1): C832 - C839

    PubMed  CAS  Google Scholar 

  • Kaplan DR, Miller FD (1997) Signal transduction by the neurotrophin receptors. Curr Opin Cell Biol 9: 213–221

    Article  PubMed  CAS  Google Scholar 

  • Knudson CM, Tung KS, Tourtellotte WG, Brown GA, Korsmeyer SJ (1995) Bax-deficient mice with lymphoid hyperplasia and male germ cell death. Science 270: 96–99

    Article  PubMed  CAS  Google Scholar 

  • Kohda K, Wang Y, Yuzaki M (2000) Mutation of a glutamate receptor motif reveals its role in gating and delta2 receptor channel properties [see comments]. Nat Neurosci 3: 315–322

    Article  PubMed  CAS  Google Scholar 

  • Krajewska M, Wang HG, Krajewski S, Zapata JM, Shabaik A, Gascoyne R, Reed JC (1997) Immunohistochemical analysis of in vivo patterns of expression of CPP32 (Caspase-3), a cell death protease. Cancer Res 57: 1605–1613

    PubMed  CAS  Google Scholar 

  • Kuida K, Zheng TS, Na S, Kuan C, Yang D, Karasuyama H, Rakic P, Flavell RA (1996) Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 384: 368–372

    Article  PubMed  CAS  Google Scholar 

  • Kuo TH, Kim HR, Zhu L, Yu Y, Lin HM, Tsang W (1998) Modulation of endoplasmic reticulum calcium pump by Bd-2. Oncogene 17: 1903–1910

    Article  PubMed  CAS  Google Scholar 

  • Mahajan NP, Linder K, Berry G, Gordon GW, Heim R, Herman B (1998) Bd-2 and Bax interactions in mitochondria probed with green fluorescent protein and fluorescence resonance energy transfer [see comments]. Nat Biotechnol 16: 547–552

    Article  PubMed  CAS  Google Scholar 

  • Mancini M, Nicholson DW, Roy S, Thornberry NA, Peterson EP, Casciola-Rosen LA, Rosen A (1998) The caspase-3 precursor has a cytosolic and mitochondrial distribution: implications for apoptotic signaling. J Cell Biol 140: 1485–1495

    Article  PubMed  CAS  Google Scholar 

  • Marks N, Berg MJ, Guidotti A, Saito M (1998) Activation of caspase-3 and apoptosis in cerebellar granule cells. J Neurosci Res 52: 334–341

    Article  PubMed  CAS  Google Scholar 

  • Martinou JC, Dubois-Dauphin M, Staple JK, Rodriguez I, Frankowski H, Missotten M, Albertini P, Talabot D, Catsicas S, Pietra C, Huarte J (1994) Overexpression of BCL-2 in transgenic mice protects neurons from naturally occurring cell death and experimental ischemia. Neuron 13: 1017–1030

    Article  PubMed  CAS  Google Scholar 

  • Miller TM, Moulder KL, Knudson CM, Creedon DJ, Deshmukh M, Korsmeyer SJ, Johnson EM Jr (1997) Bax deletion further orders the cell death pathway in cerebellar granule cells and suggests a caspase-independent pathway to cell death. J Cell Biol 139: 205–217

    Article  PubMed  CAS  Google Scholar 

  • Murphy AN, Bredesen DE, Cortopassi G, Wang E, Fiskum G (1996) Bcl-2 potentiates the maximal calcium uptake capacity of neural cell mitochondria. Proc Natl Acad Sci USA 93: 9893–9898

    Article  PubMed  CAS  Google Scholar 

  • Namura S, Zhu J, Fink K, Endres M, Srinivasan A, Tomaselli KJ, Yuan J, Moskowitz MA (1998) Activation and cleavage of caspase-3 in apoptosis induced by experimental cerebral ischemia. J Neurosci 18 (10): 3659–3668

    PubMed  CAS  Google Scholar 

  • Nicholson DW, Thornberry NA (1997) Caspases: killer proteases. Trends Biochem Sci 22: 299–306

    Article  PubMed  CAS  Google Scholar 

  • Norman DJ, Feng L, Cheng SS, Gubbay J, Chan E, Heintz N (1995) The lurcher gene induces apoptotic death in cerebellar Purkinje cells. Development 121: 1183–1193

    PubMed  CAS  Google Scholar 

  • Oltvai ZN, Milliman CL, Korsmeyer SJ (1993) Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74: 609–619

    Google Scholar 

  • Pettmann B, Henderson CE (1998) Neuronal cell death. Neuron 20: 633–647

    Article  PubMed  CAS  Google Scholar 

  • Phillips RJS (1960) Lurcher, a new gene in linkage group XI of the house mouse. J Genet 57: 35–42

    Article  Google Scholar 

  • Riccio A, Ahn S, Davenport CM, Blendy JA, Ginty DD (1999) Mediation by a CREB family transcription factor of NGF-dependent survival of sympathetic neurons. Science 286: 2358–2361

    Article  PubMed  CAS  Google Scholar 

  • Selimi F, Campana A, Weitzman J, Vogel M, Mariani J (2000 a) Bax and p53 are differentially involved in the regulation of caspase-3 expression and activation during neurodegeneration in Lurcher mice. CR Acad Sci III 323: 1–7

    Google Scholar 

  • Selimi F, Doughty M, Delhaye-Bouchaud N, Mariani J (2000 b) Target-related and intrinsic neuronal death in Lurcher mutant mice are both mediated by caspase-3 activation. J Neurosci 20: 992–1000

    Google Scholar 

  • Selimi F, Vogel MW, Mariani J (2000c) Bax inactivation in lurcher mutants rescues cerebellar granule cells but not purkinje cells or inferior olivary neurons. J Neurosci 20: 5339–5345

    PubMed  CAS  Google Scholar 

  • Shindler KS, Latham CB, Roth KA (1997) Bax deficiency prevents the increased cell death of immature neurons in bcl-x-deficient mice. J Neurosci 17: 3112–3119

    PubMed  CAS  Google Scholar 

  • Smeyne R, Chu T, Lewin A, Bian F, S-Crisman S, Kunsch C, Lira S, Oberdick J (1995) Local control of granule cell generation by cerebellar Purkinje cells. Mol Cell Neurosci 6: 230–251

    Article  PubMed  CAS  Google Scholar 

  • Sotelo C, Changeux JP (1974) Transsynaptic degeneration `en cascade’ in the cerebellar cortex of staggerer mutant mice. Brain Res 67: 519–526

    Article  PubMed  CAS  Google Scholar 

  • Tanabe H, Eguchi Y, Kamada S, Martinou J, Tsujimoto Y (1997) Susceptibility of cerebellar granule neurons derived from Bcl-2-deficient and transgenic mice to cell death. Eur J Neurosci 9: 848–856

    Article  PubMed  CAS  Google Scholar 

  • Thornberry NA, Lazebnik Y (1998) Caspases: enemies within. Science 281: 1312–1316

    Article  PubMed  CAS  Google Scholar 

  • Thornberry NA, Rano TA, Peterson EP, Rasper DM, Timkey T, Garcia-Calvo M, Houtzager VM, Nordstrom PA, Roy S, Vaillancourt JP, Chapman KT, Nicholson DW (1997) A combinatorial approach defines specificities of members of the caspase family and granzyme B. J Biol Chem 272: 17907–17911

    Article  PubMed  CAS  Google Scholar 

  • Triarhou LC (1998) Rate of neuronal fallout in a transsynaptic cerebellar model. Brain Res Bull 47: 219–222

    Article  PubMed  CAS  Google Scholar 

  • Vander Heiden MG, Chandel NS, Williamson EK, Schumacker PT, Thompson CB (1997) Bcl-xL regulates the membrane potential and volume homeostasis of mitochondria. Cell 91: 627–637

    Article  Google Scholar 

  • Vekrellis K, McCarthy MJ, Watson A, Whitfield J, Rubin LL, Ham J (1997) Bax promotes neuronal cell death and is downregulated during the development of the nervous system. Development 124: 1239–1249

    PubMed  CAS  Google Scholar 

  • Vogel MW, McInnes M, Zanjani HS, Herrup K (1991) Cerebellar Purkinje cells provide target support over a limited spatial range: evidence from lurcher chimeric mice. Brain Res Dev Brain Res 64: 87–94

    Article  PubMed  CAS  Google Scholar 

  • Wetts R, Herrup K ( 1982 a) Interaction of granule, Purkinje and inferior olivary neurons in lurcher chimaeric mice. I. Qualitative studies. J Embryol Exp Morphol 68: 87–98

    Google Scholar 

  • Wetts R, Herrup K (1982b) Interaction of granule, Purkinje and inferior olivary neurons in lurch-er chimeric mice. II. Granule cell death. Brain Res 250: 358–362

    CAS  Google Scholar 

  • White FA, Keller-Peck CR, Knudson CM, Korsmeyer SJ, Snider WD (1998) Widespread elimination of naturally occurring neuronal death in Bax-deficient mice. J Neurosci 18: 1428–1439

    PubMed  CAS  Google Scholar 

  • Wullner U, Loschmann PA, Weller M, Klockgether T (1995) Apoptotic cell death in the cerebellum of mutant weaver and lurcher mice. Neurosci Lett 200: 109–112

    Article  PubMed  CAS  Google Scholar 

  • Wullner U, Weller M, Schulz JB, Krajewski S, Reed JC, Klockgether T (1998) Bcl-2, Bax and Bel-x expression in neuronal apoptosis: a study of mutant weaver and lurcher mice. Acta Neropathol (Berl) 96: 233–238

    Article  CAS  Google Scholar 

  • Zanjani HS, Mariani J, Herrup K (1990) Cell loss in the inferior olive of the staggerer mutant mouse is an indirect effect of the gene. J Neurogenet 6: 229–241

    Article  PubMed  CAS  Google Scholar 

  • Zanjani HS, Rondi-Reig L, Vogel M, Martinou JC, Delhaye-Bouchaud N, Mariani J (1998a) Over-expression of a Hu-bcl-2 transgene in Lurcher mutant mice delays Purkinje cell death. CR Acad Sci III 321: 633–640

    Article  CAS  Google Scholar 

  • Zanjani HS, Vogel MW, Martinou JC, Delhaye-Bouchaud N, Mariani J (1998b) Postnatal expression of Hu-bcl-2 gene in Lurcher mutant mice fails to rescue Purkinje cells but protects inferior olivary neurons from target-related cell death. J Neurosci 18: 319–327

    PubMed  CAS  Google Scholar 

  • Zuo J, De Jager PL, Takahashi KA, Jiang W, Linden DJ, Heintz N (1997) Neurodegeneration in Lurcher mice caused by mutation in delta2 glutamate receptor gene. Nature 388: 769–773

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Selimi, F., Campana, A., Bakouche, J., Lohof, A., Vogel, M.W., Mariani, J. (2001). Mechanisms of Neuronal Death: An in vivo Study in the Lurcher Mutant Mice. In: Henderson, C.E., Green, D.R., Mariani, J., Christen, Y. (eds) Neuronal Death by Accident or by Design. Research and Perspectives in Neurosciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04333-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04333-2_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07517-9

  • Online ISBN: 978-3-662-04333-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics