Skip to main content

Mitochondria and Apoptosis, the Stepping Stones on the Path to Death

  • Conference paper
Neuronal Death by Accident or by Design

Part of the book series: Research and Perspectives in Neurosciences ((NEUROSCIENCE))

  • 102 Accesses

Summary

Apoptosis is a form of cellular suicide that allows for the removal of damaged, infected, superfluous or otherwise questionable cells without releasing toxic cellular contents that may trigger an inflammatory response, or damage nearby cells. The active and orderly characteristics of apoptosis contrast with necrotic cell death, which is stochastic and usually pro-inflammatory. The biochemical pathways involved in apoptosis involve the activation of a family of constitutively expressed proteinases called caspases. Working backwards from the last stages of cell death toward caspase activation we can now determine which apoptotic pathways are engaged in response to particular proapoptotic stimuli. Among the beneficiaries of this newfound knowledge are those investigators working on neurodegenerative disorders that result from the apoptotic death of discrete neuronal populations. Applying current knowledge of the mechanisms of apoptosis to long-studied disorders such as Huntington’s, Parkinson’s and Alzheimer’s diseases is a bit like turning to the back of a mystery novel halfway through. If the middle chapters of that book are missing, knowing how it ends will aid greatly in reconstructing what happened, despite taking out some of the mystery. The detailed characterization of apoptosis is providing an end-point from which we can trace these disorders backwards to their causes. Insights provided by apoptosis research will speed progress and aid in the development of efficacious treatments that address the causes, rather than just the symptoms, of many neurodegenerative disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alnemri ES, Livingston DJ, Nicholson DW, Salvesen G, Thornberry NA, Wong WW, Yuan J (1996) Human ICE/CED-3 protease nomenclature. Cell 87 (2): 171

    Article  PubMed  CAS  Google Scholar 

  • Bossy-Wetzel E, Newmeyer DD, Green DR (1998) Mitochondrial cytochrome c release in apoptosis occurs upstream of DEVD-specific caspase activation and independently of mitochondrial transmembrane depolarization. EMBO J 17: 37–49

    Article  PubMed  CAS  Google Scholar 

  • Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96 (6): 857–868

    Article  PubMed  CAS  Google Scholar 

  • Collins RJ, Harmon BV, Gobe GC, Kerr JF (1992) Internucleosomal DNA cleavage should not be the sole criterion for identifying apoptosis. Int J Radiat Biol 61: 451–453

    Article  PubMed  CAS  Google Scholar 

  • Cotter TG, Lennon SV, Glynn JM, Green DR (1992) Microfilament-disrupting agents prevent the formation of apoptotic bodies in tumor cells undergoing apoptosis. Cancer Res 52: 997–1005

    PubMed  CAS  Google Scholar 

  • D’Mello SR, Borodezt K, Soltoff S (1997) Insulin-like growth factor and potassium maintain neuronal survival by distinct pathways: possible involvement of PI 3-kinase in IGF-1 signaling. J Neurosci 17 (5): 1548–1560

    PubMed  Google Scholar 

  • Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, Greenberg ME (1997) Akt phosphorylation of BAD couples survival signals to the cell intrinsic death machinery. Cell 91 (2): 231–241

    Article  PubMed  CAS  Google Scholar 

  • Deckwerth TL, Elliott JL, Knudson CM, Johnson EM Jr, Snider WD, Korsmeyer SJ (1996) BAX is required for neuronal death after trophic factor deprivation and during development. Neuron 17 (3): 401–411

    Article  PubMed  CAS  Google Scholar 

  • Delcommenne M, Tan C, Gray V, Rue L, Woodgett J, Dedhar S (1998) Phosphoinositide-3-OH kinase-dependent regulation of glycogen synthase kinase 3 and protein kinase B/Akt by the integrin-linked kinase. Proc Natl Acad Sci USA 95: 11211–11216

    Article  PubMed  CAS  Google Scholar 

  • Peso L, Gonzalez-Garcia M, Page C, Herrerra R, Nunez G (1997) Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science 278 (5338): 687–689

    Article  PubMed  Google Scholar 

  • Deveraux QL, Reed JC (1999) IAP family proteins - suppressors of apoptosis. Genes Dev 13: 239252

    Google Scholar 

  • Deveraux QL, Roy N, Stennicke HR, Van Arsdale T, Zhou Q, Srinivasula SM, Alnemri ES, Salvesen GS, Reed JC (1998) IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases. EMBO J 17 (8): 2215–2223

    Article  PubMed  CAS  Google Scholar 

  • Deveraux QL, Takahashi R, Salvesen GS, Reed JC (1997) X-linked IAP is a direct inhibitor of cell-death proteases. Nature 388 (6639): 300–304

    Article  PubMed  CAS  Google Scholar 

  • Devitt A, Moffatt OD, Raykundalia C, Capra JD, Simmons DL, Gregory CD (1998) Human CD14 mediates recognition and phagocytosis of apoptotic cells. Nature 392: 505–509

    Article  PubMed  CAS  Google Scholar 

  • Du C, Fang M, Li Y, Li L, Wang X (2000) Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102 (1): 33–42

    Article  PubMed  CAS  Google Scholar 

  • Dudek H, Datta SR, Franke TF, Birnbaum MJ, Yao R, Cooper GM, Segal RA, Kaplan DR, Greenberg ME (1997) Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science 275: 661–665

    Article  PubMed  CAS  Google Scholar 

  • Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A, Nagata S (1998) A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391: 43–50

    Article  PubMed  CAS  Google Scholar 

  • Fadok VA, Warner ML, Bratton DL, Henson PM (1998) CD36 is required for phagocytosis of apoptotic cells by human macrophages that use either a phosphatidylserine receptor or the vitronectin receptor (alpha v beta 3). J Immunol 161: 6250–6257

    PubMed  CAS  Google Scholar 

  • Fadok VA, Bratton DL, Rose DM, Pearson A, Ezekewitz RAB, Henson PM (2000) A new receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature, in press

    Google Scholar 

  • Franke TF, Kaplan CR, Cantley LC, Toker A (1997) Direct regulation of the Akt proto-oncogene by phosphatidylinositol-3,4-biphosphate. Science 275: 665–668

    Article  PubMed  CAS  Google Scholar 

  • Goldstein JC, Waterhouse NJ, Juin P, Evan GI, Green DR (2000) The coordinate release of cytochrome a c during apoptosis is rapid, complete and kinetically invariant. Nat Cell Biol 2 (3): 156–162

    Article  PubMed  CAS  Google Scholar 

  • Green DR (1998) Apoptotic pathways: the roads to ruin. Cell 94: 695–698

    Article  PubMed  CAS  Google Scholar 

  • Gross A, McDonnell JM, Korsmeyer SJ (1999) BCL-2 family members and the mitochondria in apoptosis. Genes Dev 13 (15): 1899–1911

    Article  PubMed  CAS  Google Scholar 

  • Harada H, Becknell B, Wilm M, Mann M, Huang LJ, Taylor SS, Scott JD, Korsmeyer SJ (1999) Phosphorylation and inactivation of BAD by mitochondrial-anchored protein kinase A. Mol Cell 3: 413–422

    Article  PubMed  CAS  Google Scholar 

  • Kapeller R, Cantley LC (1994) Phosphatidylinositol 3-kinase. Bioessays 16: 565–576

    Article  PubMed  CAS  Google Scholar 

  • Kauffman-Zeh A, Rodriguez-Viciana P, Ulrich E, Gilbert C, Coffer P, Downward J, Evan G (1997) Supression of c-myc-induced apoptosis by Ras signalling through PI(3)K and PKB. Nature 385 (6616): 544–548

    Article  Google Scholar 

  • Kennedy SG, Wagner AJ, Conzen SD, Jordan J, Bellacosa A, Tsichlis PN (1997) The PI 3-kinase/ Akt signaling pathway delivers an anti-apoptotic signal. Genes Dev 11 (6): 701–713

    Article  PubMed  CAS  Google Scholar 

  • D. W. Ethell and D. R. Green Khwaya A, Rodriguez-Viciana P, Wennstrom S, Warne PH, Downward J (1997) Matrix adhesion and Ras transformation both activate a phosphoinositide 3-OH kinase and protein kinase B/ Akt cellular survival pathway. EMBO J 16 (10): 2783–2793

    Article  Google Scholar 

  • Klippel A, Kavanaugh WM, Pot D, Williams LT (1997) A specific product of phosphatidylinositol 3-kinase directly activates the protein kinase Akt through its pleckstrin homology domain. Mol Cell Biol 17: 338–344

    PubMed  CAS  Google Scholar 

  • Kothakota S, Azuma T, Reinhard C, Klippel A, Tang J, Chu K, McGarry TJ, Kirschner MW, Koths K, Kwiatkowski DJ, William LT (1977) Caspase-3-generated fragment of gelsolin: effector of morphological change in apoptosis. Science 278: 294–298

    Article  Google Scholar 

  • Kulik G, Klippel A, Weber MJ (1997) Antiapoptotic signalling by the insulin-like growth factor receptor, phosphatidylinositol 3-kinase, and Akt. Mol Cell Biol 17 (3): 1595–1606

    PubMed  CAS  Google Scholar 

  • Lee N, McDonald H, Reinhard C, Halenbeck R, Roulston A, Shi T, Williams LT (1997) Activation of hPAK65 by caspase cleavage indues some of the morphological and biochemical changes of apoptosis. Proc Natl Acad Sci USA 94: 13642–13647

    Article  PubMed  CAS  Google Scholar 

  • Le-Niculescu H, Bonfoco E, Kasuya Y, Claret FX, Green DR, Karin M (1998) Withdrawal of survival factors results in activation of the JNK pathway in neuronal cells leading to Fas ligand induction and cell death. Mol Cell Biol 19 (1): 751–763

    Google Scholar 

  • Liu X, Zou H, Slaugther C, Wang X (1997) DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 89: 175–184

    Article  PubMed  CAS  Google Scholar 

  • Martin SJ, O’Brien GA, Nishioka WK, McGahon AJ, Mahboubi A, Saido TC, Green DR (1995) Proteolysis of fodrin (non-erythroid spectrin) during apoptosis. J Biol Chem 270: 6425–6428

    Article  PubMed  CAS  Google Scholar 

  • Martin SJ, Reutelingsperger CP, McGahon AJ, Rader JA, van Schie RC, LaFace DM, Green DR (1995) Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bd-2 and Abl. J Exp Med 182: 1545–1556

    Article  PubMed  CAS  Google Scholar 

  • Martin SJ, Finucane DM, Amarante-Mendes GP, O’Brien GA, Green DR (1996) Phosphatidylserine externalization during CD95-induced apoptosis of cells and cytoplasts requires ICE/CED-3 protease activity. J Biol Chem 271:28 753–28 756

    Google Scholar 

  • McCarthy NJ, Whyte MK, Gilbert CS, Evan GI (1997) Inhibition of Ced-3/ICE-related proteases does not prevent cell death induced by oncogenes, DNA damage, or the Bd-2 homologue Bak. J Cell Biol 136: 215–227

    Article  PubMed  CAS  Google Scholar 

  • Ren Y, Silverstein RL, Allen J, Savill J (1995) CD36 gene transfer confers capacity for phagocytosis of cells undergoing apoptosis. J Exp Med 181: 1857–1862

    Article  PubMed  CAS  Google Scholar 

  • Rudel T, Bokoch GM (1997) Membrane and morphological changes in apoptotic cells regulated by caspase-mediated activation of PAK2. Science 276: 1571–1574

    Article  PubMed  CAS  Google Scholar 

  • Sahara S, Aoto M, Eguchi Y, Imamoto N, Yoneda Y, Tsujimoto Y (1999) Acinus is a caspase-3-activated protein required for apoptotic chromatin condensation. Nature 401: 168–173

    Article  PubMed  CAS  Google Scholar 

  • Savill J, Dransfield I, Hogg N, Haslett C (1990) Vitronectin receptor-mediated phagocytosis of cells undergoing apoptosis. Nature 343: 170–173

    Article  PubMed  CAS  Google Scholar 

  • Stennicke HR, Salvesen GS (1999) Catalytic properties of the caspases. Cell Death Diff 6 (11): 1054–1059

    Article  CAS  Google Scholar 

  • Thornberry NA, Lazebnik Y (1998) Caspases: enemies within. Science 281: 1312–1316

    Article  PubMed  CAS  Google Scholar 

  • Vanags DM, Porn-Ares MI, Coppola S, Burgess DH, Orrenius S (1996) Protease involvement in fodrin cleavage and phosphatidylserine exposure in apoptosis. J Biol Chem 271:31 075–31 085 Verhagen AM, Ekert PG, Pakusch M, Silke J, Connolly LM, Reid GE, Moritz RL, Simpson RJ, Vaux

    Google Scholar 

  • DL (2000) Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102: 43–53

    Article  Google Scholar 

  • Ahsen O, Renken C, Perkins G, Kluck RM, Bossy-Wetzel E, Newmeyer DD (2000) Preservation of mitochondrial structure and function after Bid-or Bax-mediated cytochrome c release. J Cell Biol 150: 1027–1036

    Article  Google Scholar 

  • Wang HG, Pathan N, Ethell IM, Krajewski S, Yamaguchi Y, Shibasaki F, McKeon F, Bobo T, Franke TF, Reed JC (1999) Cat+-induced apoptosis through calcineurin dephosphorylation of BAD. Science 284 (5412): 339–343

    Article  PubMed  CAS  Google Scholar 

  • Weil M, Jacobson MD, Coles HS, Davies TJ, Gardner RL, Raff KD, Raff MC (1996) Constitutive expression of the machinery for programmed cell death. J Cell Biol 133 (5): 1053–1059

    Article  PubMed  CAS  Google Scholar 

  • Wolf BB, Green DR (1999) Suicidal tendencies: apoptotic cell death by caspase family proteinases. J Biol Chem 274: 20049–20052

    Article  PubMed  CAS  Google Scholar 

  • Wolf BB, Goldstein JC, Stennicke HR, Beere H, Amarante-Mendes GP, Salvesen GS, Green DR (1999) Calpain functions in a caspase-independent manner to promote apoptosis-like events during platelet activation. Blood 94: 1683–1692

    PubMed  CAS  Google Scholar 

  • Zha J, Harada H, Yang E, Jockel J, Korsmeyer SJ (1996) Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14–3–3 not BCL–X(L). Cell 87: 619 – 628

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Lee H, Lou DW, Bovin GP, Xu M (2000) Lack of obvious 50 kilobase pair DNA fragments in DNA fragmentation factor 45-deficient thymocytes upon activation of apoptosis. Biochem Biophys Res Commun 274 (1): 225–229

    Article  PubMed  CAS  Google Scholar 

  • Zou H, Henzel WJ, Liu X, Lutschg A, Wang X (1997), Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90(3): 405413

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ethell, D.W., Green, D.R. (2001). Mitochondria and Apoptosis, the Stepping Stones on the Path to Death. In: Henderson, C.E., Green, D.R., Mariani, J., Christen, Y. (eds) Neuronal Death by Accident or by Design. Research and Perspectives in Neurosciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04333-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04333-2_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07517-9

  • Online ISBN: 978-3-662-04333-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics