Skip to main content

Expressive Power: The Finite Case

  • Chapter
Constraint Databases

Abstract

As we have seen in the previous chapter, usual relational databases are just a special case of the constraint model; indeed, a tuple \(\vec a = ({a_1},...,{a_n})\) can be represented as a constraint \({c_{\vec a}}({x_1},...,{x_n}) \equiv {x_1} = {a_1} \wedge ... \wedge {x_n} = {a_n}\) in free variables x 1,..., x n . A relation \(R = \left\{ {\vec a,...,{{\vec a}_m}} \right\}\) is then represented by a formula \({c_R}({x_1},...,{x_n}) \equiv {c_{\vec a}} \vee \cdots \vee {c_{{{\vec a}_m}}}\) stating that the interpretation of a tuple (x 1 ,..., x n) must be among the \({\vec a_i}S.\) Consequently, constraint query languages, over a structure \(M = \left\langle {U,\Omega } \right\rangle \), can be considered as query languages over ordinary relational databases whose elements come from the set u. For example, FO + Lin and FO + Poly, the relational calculus with linear and polynomial constraints, can be considered as query languages over ordinary relational databases that store numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographic Notes

  1. P. C. Kanellakis, G. M. Kuper, and P. Z. Revesz. Constraint query languages. Journal of Computer and System Sciences, 51 (1): 26–52, 1995.

    Article  MathSciNet  Google Scholar 

  2. A. V. Aho and J. D. Ullman. The universality of data retrieval languages. In Proceedings of the 6th Annual ACM Symposium on Principles of Programming Languages (POPL’79), pages 110–120. ACM Press, 1979.

    Google Scholar 

  3. Y. Gurevich. Toward logic tailored for computational complexity. In Computation and Proof Theory, volume 1104 of Lecture Notes in Mathematics, pages 175–216. Springer-Verlag, 1984.

    Google Scholar 

  4. N. Immerman. Relational queries computable in polynomial time. Information and Control, 68 (1–3): 86–104, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  5. M. Y. Vardi. The complexity of relational query languages. In Proceedings of the 14th ACM Symposium on Theory of Computing (STOC’82), pages 137–146, 1982.

    Google Scholar 

  6. G. M. Kuper. On the expressive power of the relational calculus with arithmetic constraints. In 3rd International Conference on Database Theory (ICDT’90), volume 470 of Lecture Notes in Computer Science, pages 202–211. Springer-Verlag, 1990.

    Google Scholar 

  7. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.

    Google Scholar 

  8. D. Goldin and P. C. Kanellakis. Constraint query algebras. Constraints, 1 (1/2): 45–83, 1996.

    Article  MathSciNet  Google Scholar 

  9. S. Grumbach, J. Su, and C. Tollu. Linear constraint query languages: Expressive power and complexity. In D. Leivant, editor, International Workshop on Logic and Computational Complexity (LCC’94), volume 960 of Lecture Notes in Computer Science, pages 426–446. Springer-Verlag, 1995.

    Google Scholar 

  10. M. L. Furst, J. B. Saxe, and M. Sipser. Parity, circuits, and the polynomial-time hierarchy. Mathematical Systems Theory (MST), 17 (1): 13–27, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  11. A. K. Aylamazyan, M. M. Gilula, A. P. Stolboushkin, and G. F. Schwartz. Reduction of the relational model with infinite domains to the case of finite domains. Doklady Akademii Nauk SSSR,286(2):308–311, 1986. In Russian.

    Google Scholar 

  12. A. Avron and Y. Hirshfeld. On first order database query languages. In Proceedings 6th IEEE Symposium on Logic in Computer Science (LICS’91), pages 226–231, 1991.

    Chapter  Google Scholar 

  13. R. Hull and J. Su. Domain independence and the relational calculus. Acta Informatica, 31 (6): 513–524, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  14. J. Van den Bussche and L. Cabibbo. Converting untyped formulas to typed ones. Acta Informatica, 35 (8): 637–643, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  15. M. Benedikt and L. Libkin. Languages for relational databases over interpreted structures. In Proceedings of the 16th ACM SIGACTSIGMOD-SIGART Symposium on Principles of Database Systems (PODS’97), pages 87–98. ACM Press, 1997.

    Google Scholar 

  16. J. Paredaens, J. Van den Bussche, and D. Van Gucht. First-order queries on finite structures over the reals. SIAM Journal on Computing, 27 (6): 1747–1763, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  17. A. P. Stolboushkin and M. A. Taitslin. Linear vs. order constrained queries over rational databases. In Proceedings of the 15th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS’96), pages 17–27. ACM Press, 1996.

    Google Scholar 

  18. M. Benedikt and L. Libkin. On the structure of queries in constraint query languages. In Proceedings 11th IEEE Symposium on Logic in Computer Science (LICS’96), pages 25–34, 1996.

    Google Scholar 

  19. M. Benedikt and L. Libkin. Languages for relational databases over interpreted structures. In Proceedings of the 16th ACM SIGACTSIGMOD-SIGART Symposium on Principles of Database Systems (PODS’97), pages 87–98. ACM Press, 1997.

    Google Scholar 

  20. S. Basu. An improved algorithm for quantifier elimination over real closed fields. In Proceedings 38th IEEE Symposium on Foundations of Computer Science (FOCS’97), pages 56–65, 1997.

    Chapter  Google Scholar 

  21. S. Basu. Uniform quantifier elimination and constraint query processing. In International Symposium on Symbolic and Algebraic Computation (ISSAC’97), pages 21–27, 1997.

    Google Scholar 

  22. I. Parberry and G. Schnitger. Parallel computation with threshold functions. Journal of Computer and System Sciences (JCSS), 36 (3): 278–302, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  23. M. Otto and J. Van den Bussche. First-order queries on databases embedded in an infinite structure. Information Processing Letters (IPL), 60 (1): 37–41, 1996.

    Article  MATH  Google Scholar 

  24. R. L. Graham, B. L. Rothschild, and J. H. Spencer. Ramsey Theory. Wiley-Interscience Series in Discrete Mathematics and Optimization. John Wiley Sons, 2nd edition, 1990.

    Google Scholar 

  25. J. Nehetiil and V. Rödl. Mathematics of Ramsey Theory. Springer Verlag, 1991.

    Google Scholar 

  26. C. C. Chang and H. J. Keisler. Model Theory, volume 73 of Studies in Logic and the Foundations of Mathematics. North-Holland, 3rd edition, 1990.

    Google Scholar 

  27. P. G. Kolaitis and M. Y. Vardi Infinitary logics and 0–1 laws. Information and Computation, 98 (2): 258–294, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  28. H. Gaifman On local and non-local properties. In J. Stern, editor, Proceedings of the Herbrand Symposium, Logic Colloquium ‘81, pages 105–135. North-Holland, 1982.

    Google Scholar 

  29. O. Günther and J. Bilmes. Tree-based access methods for spatial databases: Implementation and performance evaluation. IEEE Transactions on Knowledge and Data Engineering (TKDE), 3 (3): 342–356, 1991.

    Article  Google Scholar 

  30. H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Perspectives in Mathematical Logic, Omega Series. Springer-Verlag, 1995.

    MATH  Google Scholar 

  31. H. Gaifman On local and non-local properties. In J. Stern, editor, Proceedings of the Herbrand Symposium, Logic Colloquium ‘81, pages 105–135. North-Holland, 1982.

    Google Scholar 

  32. M. Grohe and T. Schwentick. Locality of order-invariant first-order formulas. In 23rd Conference on Mathematical Foundations of Computer Science (MFCS’98), volume 1450 of Lecture Notes in Computer Science, pages 437–445. Springer-Verlag, 1998.

    Google Scholar 

  33. S. Grumbach and J. Su. Queries with arithmetical constraints. The- oretical Computer Science (TCS), 173 (1): 151–181, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  34. M. Benedikt and L. Libkin. Relational queries over interpreted structures. Journal of the ACM (JACM), 2000. To appear.

    Google Scholar 

  35. H. Gaifman On local and non-local properties. In J. Stern, editor, Proceedings of the Herbrand Symposium, Logic Colloquium ‘81, pages 105–135. North-Holland, 1982.

    Google Scholar 

  36. O. Günther and J. Bilmes. Tree-based access methods for spatial databases: Implementation and performance evaluation. IEEE Transactions on Knowledge and Data Engineering (TKDE), 3 (3): 342–356, 1991.

    Article  Google Scholar 

  37. M. Grohe and T. Schwentick. Locality of order-invariant first-order formulas. In 23rd Conference on Mathematical Foundations of Computer Science (MFCS’98), volume 1450 of Lecture Notes in Computer Science, pages 437–445. Springer-Verlag, 1998.

    Google Scholar 

  38. S. Grumbach and J. Su. Queries with arithmetical constraints. The- oretical Computer Science (TCS), 173 (1): 151–181, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  39. R. Fagin. Probabilities on finite models. Journal of Symbolic Logic, 41 (1): 50–58, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  40. L. van den Dries. O-minimal structures. In W. A. Hodges, editor, Logic: From Foundations to Applications, pages 99–108. Clarendon Press, 1996.

    Google Scholar 

  41. L. van den Dries. Tame Topology and O-minimal Structures Cambridge University Press, 1998.

    Google Scholar 

  42. A. Pillay and C. Steinhorn. Definable sets in ordered structures, III. Transactions of the American Mathematical Society (AMS), 309: 469–476, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  43. M. Benedikt and L. Libkin. On the structure of queries in constraint query languages. In Proceedings 11th IEEE Symposium on Logic in Computer Science (LICS’96), pages 25–34, 1996.

    Google Scholar 

  44. P. C. Kanellakis, G. M. Kuper, and P. Z. Revesz. Constraint query languages. Journal of Computer and System Sciences, 51 (1): 26–52, 1995.

    Article  MathSciNet  Google Scholar 

  45. S. Grumbach and G. M. Kuper. Tractable recursion over geometric data. In Proceedings of the and International Conference on Principles and Practice of Constraint Programming (CP’97), volume 1330 of Lecture Notes in Computer Science, pages 450–462. Springer-Verlag, 1997.

    Google Scholar 

  46. M. Benedikt, G. Dong, L. Libkin, and L. Wong. Relational expressive power of constraint query languages. Journal of the ACM, 45 (1): 134, 1998.

    Article  MathSciNet  Google Scholar 

  47. O. V. Belegradek, A. P. Stolboushkin, and M. A. Taitslin. On ordergeneric queries. Annals of Pure and Applied Logic, 97 (1–3): 85–125, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  48. J. T. Baldwin and M. Benedikt. Embedded finite models, stability theory and the impact of order. In Proceedings 13th IEEE Symposium on Logic in Computer Science (LICS’98), pages 490–500, 1998.

    Google Scholar 

  49. S. Shelah. A combinatorial problem: Stability and order for models and theories in infinitary languages. Pacific Journal of Mathematics, 41: 241–246, 1972.

    Article  Google Scholar 

  50. M. C. Laskowski. Vapnik-Chervonenkis classes of definable sets. Journal of the London Mathematical Society, 45: 377–384, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  51. L. van den Dries. Tame Topology and O-minimal Structures Cambridge University Press, 1998.

    Google Scholar 

  52. J. T. Baldwin and M. Benedikt. Embedded finite models, stability theory and the impact of order. In Proceedings 13th IEEE Symposium on Logic in Computer Science (LICS’98), pages 490–500, 1998.

    Google Scholar 

  53. S. Buechler. Essential Stability Theory. Springer-Verlag, 1996.

    Google Scholar 

  54. M. Benedikt and L. Libkin. Safe constraint queries. In Proceedings of the 17th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS’98),pages 99–108. ACM Press, 1998. Full version to appear in SIAM Journal on Computing.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Benedikt, M., Libkin, L. (2000). Expressive Power: The Finite Case. In: Kuper, G., Libkin, L., Paredaens, J. (eds) Constraint Databases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04031-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04031-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08542-0

  • Online ISBN: 978-3-662-04031-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics