Skip to main content

Geodesic Metrics

  • Chapter
Morphological Image Analysis
  • 564 Accesses

Abstract

The distance between Sydney and Berlin is referred to as a geodesic distance because, contrary to the Euclidean distance, the shortest path linking two points on the earth is constrained to follow the surface of the geoid. In image analysis, geodesic distances are used wherever paths linking image pixels are constrained to remain within a subset of the image plane. The region thus defined is called geodesic mask. For example, when planning the path of a robot, the geodesic mask corresponds to the regions where it can move.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographical notes and references

  • Dijkstra, E. (1959), ‘A note on two problems in connexion with graphs’, Numerische Mathematik 1, 269–271.

    Article  MathSciNet  MATH  Google Scholar 

  • Fischler, M., Tenenbaum, J. and Wolf, H. (1981), ‘Detection of roads and linear structures in low-resolution aerial images using a multi-source knowledge integration technique’, Computer Graphics and Image Processing 15, 201–223.

    Google Scholar 

  • Gruen, A. and Li, H. (1995), ‘Road extraction from aerial and satellite images by dynamic programming’, ISPRS Journal of Photogrammetry and Remote Sensing 50 (4), 11–20.

    Article  Google Scholar 

  • Lantuéjoul, C. and Beucher, S. (1980), ‘Geodesic distance and image analysis’, Mikroskopie 37, 138–142.

    Google Scholar 

  • Lantuéjoul, C. and Beucher, S. (1981), ‘On the use of the geodesic metric in image analysis’, Journal of Microscopy 121, 39–49.

    Article  Google Scholar 

  • Lantuéjoul, C. and Maisonneuve, F. (1984), ‘Geodesic methods in image analysis’, Pattern Recognition 17 (2), 177–187.

    Article  MathSciNet  MATH  Google Scholar 

  • Maisonneuve, F. and Schmitt, M. (1989), ‘An efficient algorithm to compute the hexagonal and dodecagonal propagation function’, Acta Stereologica 8(2), 515 520.

    Google Scholar 

  • Martelli, A. (1976), ‘An application of heuristic search methods to edge and contour detection’, Commun. Ass. Comput. Mach. 19, 73–83.

    MATH  Google Scholar 

  • Meyer, F. (1989), ‘Skeletons and perceptual graphs’, Signal Processing 16, 335–363.

    Article  MathSciNet  Google Scholar 

  • Meyer, F. (1992), Integrals and gradients of images, in P. Gader, E. Dougherty and J. Serra, eds, ‘Image Algebra and Morphological Image Processing III’, Vol. SPIE-1769, pp. 200–211.

    Chapter  Google Scholar 

  • Meyer, F. (1996), A morphological interpolation method for mosaic images, in P. Maragos, R. Schafer and M. Butt, eds, ‘Mathematical morphology and its applications to image and signal processing’, Kluwer Academic Publishers, Boston, pp. 337–344.

    Book  Google Scholar 

  • Piper, J. and Granum, E. (1987), ‘Computing distance transformations in convex and non-convex domains’, Pattern Recognition 20 (6), 599–615.

    Article  Google Scholar 

  • Rutovitz, D. (1968), Data structures for operations on digital images, in G. Cheng, R. Ledley, D. Kollock and A. Rosenfeld, eds, ‘Pictorial pattern recognition’, pp. 105–133.

    Google Scholar 

  • Schmitt, M. (1989), ‘Geodesic arcs in non-Euclidean metrics, application to the propagation function’, Revue d’intelligence artificielle 3 (2), 43–76.

    Google Scholar 

  • Sethian, J. (1996), Level sets methods: evolving interfaces in geometry, fluid mechanics, computer vision and material sciences,Cambridge University Press.

    Google Scholar 

  • Soille, P. (1991), ‘Spatial distributions from contour lines: an efficient methodology based on distance transformations’, Journal of Visual Communication and Image Representation 2 (2), 138–150.

    Article  Google Scholar 

  • Soille, P. (1994a), Generalized geodesic distances applied to interpolation and shape description, in J. Serra and P. Soille, eds, ‘Mathematical morphology and its applications to image processing’, Kluwer Academic Publishers, pp. 193–200.

    Chapter  Google Scholar 

  • Soille, P. (1994b), ‘Generalized geodesy via geodesic time’, Pattern Recognition Letters 15 (12), 1235–1240.

    Article  Google Scholar 

  • Soille, P. and Gratin, C. (1994), ‘An efficient algorithm for drainage networks extraction on DEMs’, Journal of Visual Communication and Image Representation 5 (2), 181–189.

    Article  Google Scholar 

  • Usson, Y. and Montanvert, A. (1993),Reconstruction tridimensionnelle à partir des distances discrètes, in ‘Colloque géométrie discrète en imagerie: fondements et applications’, Strasbourg, pp. 20–21.

    Google Scholar 

  • Verbeek, P. and Verwer, B. (1990), ‘Shading from shape, the Eikonal equation solved by grey-weighted distance transform’, Pattern Recognition Letters 11, 681–690.

    Article  MATH  Google Scholar 

  • Verwer, B., Verbeek, P. and Dekker, S. (1989), ‘An efficient cost algorithm applied to distance transforms’, IEEE Transactions on Pattern Analysis and Machine Intelligence 11 (4), 425–429.

    Article  Google Scholar 

  • Vincent, L. (1998), Minimal path algorithms for the robust detection of linear features in gray images, in H. Heijmans and J. Roerdink, eds, ‘Mathematical Morphology and its Applications to Image and Signal Processing’, Vol. 12 of Computational Imaging and Vision, Kluwer Academic Publishers, Dordrecht, pp. 331–338.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Soille, P. (1999). Geodesic Metrics. In: Morphological Image Analysis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03939-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03939-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-03941-0

  • Online ISBN: 978-3-662-03939-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics