Skip to main content

Abstract

Sulfur is one of the essential elements. It plays a dominant role in atmospheric chemistry as well as in biological processes. Recent estimates of total natural sulfur emissions into the atmosphere, including the contribution of both plants and soils (4–15 Tg (S) a−1 range around 65 (± 25) Tg S a−1 (Andreae and Jaeschke, 1992), which is equivalent to estimates of man-made sulfur emissions of 93 ± 15 Tg S a−1 (Cullis and Hirschler, 1980). Organisms use sulfur for the synthesis of a large number of substances, for example amino acids and proteins. In addition resistance, defence and detoxification mechanisms including sulfur containing compounds are discussed (see Ernst 1990; Haines et al. 1989; Rennenberg 1991). Thus sulfur compounds are found in primary as well as secondary metabolism. Volatile sulfur compounds are exchanged between biosphere, atmosphere and hydrosphere. The original assumption that microbial activities were the main source for biogenic H2S in terrestrial and aquatic ecosystems (Hill 1973, Granat et al. 1976) changed following reports on biogenic emissions from vegetation (see reviews: Aneja and Cooper, 1989; Rennenberg, 1991). Today it is well accepted that higher plants are involved in the atmospheric sulfur cycle. Both, uptake and emission of volatile reduced sulfur compounds by plants have been reported (Kluczewski et al., 1985; Taylor et al., 1983, De Kok et al., 1989, 1991; Brown et al., 1986; Goldan et al., 1988, Fall et al., 1988; Rennenberg et al., 1990, Rennenberg 1991; Kesselmeier 1991, Schröder 1993).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adewuyi, Y.G., (1980), Oxidation of biogenic sulfur compounds in aqueous media: Kinetics and environmetal implications. in: Saltzman, E.S., Cooper, W.J. (eds), Biogenic Sulfur in the Environment, ACS Symposium Series, Washington pp. 529–559.

    Google Scholar 

  • Anderson J.W., (1990), Sulfur metabolism in Plants. in: Lea P.J., Miflin B.J. (eds), The Biochemistry of Plants 16, 327–381.

    Google Scholar 

  • Andreae, M.O., Jaeschke, W.A., (1992), Exchange of sulphur between biosphere and atmosphere over temperate and tropical regions, in: Howarth, R.W., Stewart, J.W.B., Ivanow, M.V. (eds), Sulphur Cycling on the Continents pp. 27-61.

    Google Scholar 

  • Aneja, V.P., Cooper, W.J., (1995), Biogenic sulfur emissions. A review. in: Saltzman, E.S., Cooper, W.J.(eds), Biogenic Sulfur in the Environment, ACS Symposium Series, Washington 1989, pp. 2–13.

    Google Scholar 

  • Arends, B.G., Mas, F., Geusebroek, M., Wyers, G.P., Veltkamp, A.C., Biogenic and reduced atmospheric sulphur compounds in the Netherlands. ECN Report ECN-C-95-014.

    Google Scholar 

  • Baldocchi, D.D., Hicks, B.B., Camara, P., (1987), A canopy stomatal resistance model for gaseous deposition vegetated surfaces. Atmos. Environ. 21, 91–101.

    Article  Google Scholar 

  • Barteil, U., Hofmann, U., Hofmann, R., Kreuzburg, B., Andreae, M.O., Kesselmeier, J., (1993), COS and H2S fluxes over a wet meadow in relation to photosynthetic activity: An analysis of measurements made on 6 September 1990. Atmos. Environ. 27A, 1851–1864.

    Google Scholar 

  • Barrie, L.A., Warmsley, J.L., (1978), A study of sulphur dioxide deposition velocities to snow in northern Canada. Atmos. Environ. 12, 2321–2322.

    Article  Google Scholar 

  • Bergmann, L., Hell, R., (1990), Determination and characterization of-glutamylcy-steine synthetase from higher plants.in: Rennenberg, H., Brunold, C, De Kok, L.J., Stulen, I. (eds), Sulfur nutrition and sulfur assimilation in higher plants, SPB Scientific Publishers, The Hague pp. 167–172.

    Google Scholar 

  • Berresheim, H., V.D. Vulcan, (1992), Vertical distribution of COS, CS2, DMS and other sulfur compounds in a loblolly pine forest. Atmos. Environ. 26A, 2031–2036.

    Google Scholar 

  • Brimblecombe, P., (1978), “Dew” as a sink for sulphur dioxide. Tellus 30, 151–157.

    Article  Google Scholar 

  • Brown, K.A., Bell, J.N.B., (1986), Vegetation — The missing sink in the global cycle of COS. Atmos. Environ. 20, 537–540.

    Article  Google Scholar 

  • Brown, K.A., Kluczewski, S.M., Bell, J.N.B., (1986), Metabolism of [35S]-carbonyl sulphide in perennial egrass (Lolium Perenne L.) and radish (Raphanus Sativus L.) Environ. Experimental Bo. 26, 355–364.

    Article  Google Scholar 

  • Brunold, C, (1990), Reduction of sulfate to sulfide. in: Rennenberg, H., Brunold, Ch., De Kok, L.J., Stulen, I. (eds), Sulfur Nutrition and Sulfur Assimilation in Higher Plants. SPB Acad. Publ, The Hague pp. 13–31.

    Google Scholar 

  • Businger, J.A., (1986), Evaluation of the accuracy with which dry deposition can be measured with current nometeorological techniques. J. Climate Appl. Meteor. 25, 1100–1124.

    Article  Google Scholar 

  • Caddie, S.H., Dasch, J.M., Mulawa, P.A., (1985), Atmospheric concentrations and the deposition velocity to snow of nitric acid, sulfur dioxide and various particulate species. Atmos. Environ. 19, 1819–1827.

    Article  Google Scholar 

  • Castro, M.S., Galloway, J.N., (1991), A comparison of sulfur-free and ambient air enclosure techniques for measuring the exchange of reduced sulfur gases between soils and the atmosphere. J. Geophys. Res. 96, 15247–15437.

    Article  Google Scholar 

  • Chameides, W.L., (1987), Acid dew and the role of chemistry in the dry deposition of reactive gases to wetted surfaces. J. Geophys. Res. 92, 11895–11908.

    Article  Google Scholar 

  • Chengelis, C.P., Neal, R.A., (1979), Hepatic carbonyl sulphide metabolism. Biochem. Biophys. Res. Comm. 90, 993–999.

    Article  Google Scholar 

  • Chengelis, C.P., Neal, R.A., (1980), Studies of carbonyl sulphide toxicity: Metabolism by carbonic anhydrase. Toxicol App. Pharmacol. 55, 198–202.

    Article  Google Scholar 

  • Chin, M., Davis, D.D., (1993), Global sources and sinks of OCS and CS2 and their distributions. Global Biogeochem. Cycles 7, 321–337.

    Article  Google Scholar 

  • Conrad, R., Bollmann, A., Lehmann, S., Rudolph, J., (1994), Mechanisms of release of NO and OCS from soil.in:EUROTRAC Annual Reports, Part 6, EUROTRAC ISS Garmisch-Partenkirchen pp. 58-63.

    Google Scholar 

  • Crutzen, P.J., (1976), The possible importance of COS for the sulfate layer of the stratosphere. Geophys. Res. Lett. 3, 73–76.

    Article  Google Scholar 

  • Cullis, CF., Hirschler, M.M., (1980), Atmospheric sulfur: Natural and man-made sources. Atmos. Environ. 14, 1263–1278

    Article  Google Scholar 

  • Davidson, C.I., Wu, Y.L., (1990), Dry deposition of particles and vapors, in: Lindberg S.E., Page A.L., Norton S.A. (eds), Acidic precipitation, Volume 3 Springer-Verlag, Berlin pp, 108–209.

    Google Scholar 

  • Davies, T.D., Mitchell, J.R., (1983), Dry deposition of sulphur dioxide onto grass in rural Eastern England with some comparison with other forms of sulphur deposition, in: Pruppacher et al. (eds) Precipitation Scavenging, Dry deposition and Resuspension, Elsevier Science Publishing Co., Inc.

    Google Scholar 

  • Davies, T.D., Wright, R.G., (1985), Sulphur dioxide deposition velocity by a concentration gradient measurement system. J. Geophys. Res. 90, 2091–2095.

    Article  Google Scholar 

  • Davison, B., Hewitt, C.N., (1992), Natural sulphur species from the North Atlantic and theit contribution to the United Kingdom sulphur budget. J. Geophys. Res. 97, 2475–2488.

    Article  Google Scholar 

  • De Kok, L., Stahl, K., Rennenberg, H., (1989), Fluxes of atmospheric hydrogen sulphide to plant shoots. New Phytol. 112, 533–542.

    Article  Google Scholar 

  • De Kok, L.J., H. Rennenberg, P.J.C. Kuiper, (1991), The internal resistance in spinach leaves to atmospheric H2S deposition is determined by metabolic processes. Plant Physiol Biochem. 29, 463–470.

    Google Scholar 

  • De Cormis, L., (1968), Release of hydrogen sulfide into an atmosphere containing sulfur dioxide. C.R. Acad. Sci. 266, 683–685.

    Google Scholar 

  • Draaijers, G.P.J., Erisman, J.W., (1993), Atmospheric sulphur deposition onto forest stands: throughfall estimates compared to estimates from inference, Atmos. Environ. 27A, 43–55.

    Google Scholar 

  • Duyzer, J.H., Bosveld, F.C., (1988), Measurements of dry deposition fluxes of O3, NOx, SO2 and particles over grass/heathland vegetation and the influence of surface inhomogeneity. Report no. R 88/111, TNO, Delft, the Netherlands.

    Google Scholar 

  • Elkiey, T., Ormrod, D.P., (1981), Absorption of ozone, sulphur dioxide, and nitrogen dioxide by petunia plants. Environ. Exp. Bot. 21, 63–70.

    Article  Google Scholar 

  • Erisman, J.W., (1993a), Acid deposition onto nature areas in the Netherlands; Part I. Methods and results. Water Soil Air Pollut. 71, 51–80.

    Article  Google Scholar 

  • Erisman, J.W., (1993b), Acid deposition onto nature areas in the Netherlands; Part II. Throughfall measurements compared to deposition estimates. Water Soil Air Pollut. 71, 81–99.

    Article  Google Scholar 

  • Erisman, J.W., Wyers, G.P., (1993), Continuous measurements of surface exchange of SO2 and NH3; implications for their possible interaction in the deposition process. Atmos. Environ. 27A, 1937–1949.

    Google Scholar 

  • Erisman, J.W., Versluis, A.H., Verplanke, T.A.J.W., de Haan, D., Anink, D., van Elzakker, B.G., Mennen, M.G., Aalst, R.M. van, (1993a), Monitoring the dry deposition of SO2 in the Netherlands. Atmos. Environ. 27, 1153–1161.

    Article  Google Scholar 

  • Erisman, J.W., Mennen, M., Hogenkamp, J., Goedhart, D., Pul, A. van, Boermans, J., (1993b), Dry deposition over the Speulder forest. in: J. Slanina, G. Angeletti, S. Beilke (eds), Air Pollution Report 47, CEC, Brussels.

    Google Scholar 

  • Erisman, J.W., Baldocchi, D.D., (1994), Modelling dry deposition of SO2. Tellus 46B, 159–171.

    Google Scholar 

  • Erisman, J.W., Pul, A. van, Wyers, P., (1994a), Parameterization of dry deposition mechanisms for the quantification of atmospheric input to ecosystems. Atmos. Environ. 28, 2595–2607.

    Article  Google Scholar 

  • Erisman, J.W., Beier, C, Draaijers, G., Lindberg, S., (1994b), Review of deposition monitoring methods. Tellus 46B, 79–93.

    Google Scholar 

  • Erisman, J.W., Elzakker, B.G. van, Mennen, M. G., Hogenkamp, J., Zwart, E., Beld L. van den, Römer, F.G., Bobbink, R., Heil, G., Raessen, M., Duyzer, J.H., Verhage, H., Wyers, G.P., Otjes, R.P., Mols, J.J., (1994c), The Elspeetsche Veld experiment on surface exchange of trace gases: summary of results. Atmos. Environ. 28, 487–496.

    Article  Google Scholar 

  • Erisman, J.W., Draaijers, G.P.J., (1995), Atmospheric deposition in relation to acidification and eutrophication. Studies in Environmental Research 63, Elsevier, the Netherlands.

    Google Scholar 

  • Ernst, W.H.O., (1990), Ecological aspects of sulfur metabolism. in: Rennenberg et al. (eds), Sulfur Nutrition and Sulfur Assimilation in Higher Plants, Academic Publishing bv, The Hague pp. 131–144.

    Google Scholar 

  • Fall, R., Albritton D.L., Fehsenfeld, F.C., Küster, W.C., Goldan, P.D., (1988), Laboratory studies of some environmental variables controlling sulfur emissions from plants. J. Atmos. Chem. 6, 341–36.

    Article  Google Scholar 

  • Filner, P., Rennenberg, H., Sekiya, J., Bressan, R.A., Wilson, L.G., Le Cureux, L., Shimei, T., (1984), Biosynthesis and emission of hydrogen sulfide by higher plants. in: Koziol, M.J., Whatey, F.R. (eds), Gaseous air pollutants and plant metabolism, Butterworth, London. pp. 291–312.

    Google Scholar 

  • Fowler, D., (1978), Dry deposition of SO2 on agricultural crops. Atmos. Environ. 12, 369–373.

    Article  Google Scholar 

  • Fowler, D., (1985), Dry deposition of SO2 onto plant canopies. in: Winner, W.E., Mooney H.A., Goldstein R.A. (eds), Sulphur dioxide and vegetation, Stanford University Press, California pp. 75–95.

    Google Scholar 

  • Fowler, D., Unsworth, M.H., (1979), Turbulent transfer of sulphur dioxide to a wheat crop. Quart. J. R. Met. Soc. 105, 767–783.

    Article  Google Scholar 

  • Fowler, D., Cape, J.N. (1984), The contamination of rain samples by dry deposition on rain collectors. Atmos. Environ. 18, 183–189.

    Article  Google Scholar 

  • Fowler, D., Duyzer, J.H., (1990), Micrometeorological techniques for the measurement of trace gas exchange. in: Andrae, M.O., Schimel, D.S. (eds),.Exchange of trace gases between terrestrial ecosystems and the atmosphere, John Wiley and Sons pp. 189-207.

    Google Scholar 

  • Fowler, D., Duyzer, J.H., Baldocchi, D.D., (1991), Inputs of trace gases, particles and cloud droplets to terrestrial surfaces. Proc. Roy. Soc. Edinburgh 97B, 35–59.

    Google Scholar 

  • Freer-Smith, P., (1985), The influence of SO2 and NO2 on the growth, development and gas exchange of Betula pendula Roth. New Phytol. 99, 417–430.

    Article  Google Scholar 

  • Fried, A., Klinger, L.F., Erickson III, D.J., (1993), Atmospheric carbonyl sulfide exchange in bog microcosms. Geophys. Res. Lett. 20, 129–132.

    Article  Google Scholar 

  • Galbally, I., (1979), Sulphur uptake from the atmosphere by forest and farmland. Nature 280, 49–50.

    Article  Google Scholar 

  • Garland, J.A., (1977), The dry deposition of sulphur dioxide to land and water surfaces. Proc. Roy. Soc. Lond. A354, 245–268.

    Google Scholar 

  • Garland, J.A., Branson, J.R, (1977), The deposition of sulphur dioxide to pine forest assessed by a radioactive tracer method. Tellus 29, 445–454.

    Article  Google Scholar 

  • Garsed, S.G., (1985), SO2 uptake and transport. in: Winner W.E., Mooney H.A., Goldstein R.A. (eds), Sulphur dioxide and vegetation, Stanford University Press, California pp. 75–95.

    Google Scholar 

  • Giovanelli, J., (1987), Sulfur amino acids of plants: an overview. in: Jacoby, W.B., Griffith, O.W. (eds), Methods in Enzymology Vol 143,. Academic Press, New York pp. 419–426.

    Google Scholar 

  • Goldan, P.D., Küster, W. C. Albritton, D.L., Fehsenfeld, F.C., (1987), The measurement of natural sulfur emissions from soil and vegetation: Three sites in the eastern United States revisited. J. Atmos. Chem. 5, 439–467.

    Article  Google Scholar 

  • Goldan, P.D., Fall, R., Küster, W. C, Fehsenfeld, F.C. (1988), The uptake of growing vegetation. A major tropospheric sink. J. Geophys. Res. 93, 14186–14192.

    Article  Google Scholar 

  • Granat, L., Rohde, H., Halberg, R.O., (1976), The global sulfur cycle. Ecol. Bull. 22, 89–134.

    Google Scholar 

  • Granat, L., Johansson, C, (1983), Dry deposition of SO2 and NOx in winter. Atmos. Environ. 17, 191–192.

    Article  Google Scholar 

  • Gries, C, Nash III, T.H., Kesselmeier, J., (1994), Exchange of reduced sulfur gases between lichens and the atmosphere. Biogeochem. 26, 25–39.

    Article  Google Scholar 

  • Guenther, A., Lamb, B., Westberg, H., (1989), U.S. national biogenic sulfur emissions inventory. in: Saltzman, E.S., Cooper, W.J. (eds), Biogenic Sulfur in the Environment, American Chemical Society, Washington D.C. pp. 15–30.

    Google Scholar 

  • Haines, B., Black, M., Bayer, C, (1989), Sulfur emission from roots of the rain forest tree Stryphnodendron excelsum. in: Saltzman, E.S., Cooper, W.J. (eds),Biogenic sulfur in the environment, ACS Symp. Ser. Washington pp. 58–69.

    Chapter  Google Scholar 

  • Hicks, B.B., Wesely, M.L., Durham, J.L., Brown, M.A., (1983), Some direct measurements of atmospheric sulphur fluxes over a pine plantation. Atmos. Environ. 16, 2899–2903.

    Google Scholar 

  • Hicks, B.B., Wesely, M.L., Coulter, R.L., Hart, R.L., Durham, J.L., Speer, R.E., Stedman, D.H., (1983), An experimental study of sulphur and NOx fluxes over grassland. Boundary-Layer Meteor. 34, 103–121.

    Article  Google Scholar 

  • Hicks, B.B., Baldocchi, D.D., Meyers, T.P., Hosker, Jr. R.P., Matt, D.R., (1987), A preliminary multiple resistance routine for deriving dry deposition velocities from measured quantities. Water, Air and Soil Pollut. 36, 311–330.

    Article  Google Scholar 

  • Hicks, B.B., Matt, D.R., McMillen, R.T., (1989), A micrometeorological investigation of surface exchange of O3, SO2 and NO2: a case study. Boundary-Layer Meteor. 47, 321–336.

    Article  Google Scholar 

  • Hicks, B.B., Draxler, R.R., Albritton, D.L., Fehsenfeld, F.C., Hales, J.M., Meyers, T.P., Vong, R.L., Dodge, M., Schwartz, S.E., Tanner, R.L., Davidson, C.I., Lindberg, S.E., Wesely M.L., (1989), Atmospheric processes research and procecess model development. State of Science/Technology report no. 2. National Acid Precipitation Assessment Program, NAPAP office, Washington.

    Google Scholar 

  • Hill, F.B., in: G.M. Woodwell, E.V. Pecan (eds), (1993), Carbon and the Biosphere. Tech. Inform. Ctr., U.S. Atomic Energy Commission pp 159-181.

    Google Scholar 

  • Hofmann, D.J., (1990), Increase in the stratospheric background sulfuric acid aerosol mass in the past 10 years. Science 248, 996–1000.

    Article  Google Scholar 

  • Hofmann, U., Merk, L., Bingemer, H., Kesselmeier, J., Andreae, M.O., (1994), Mesurements of reduced sulphur compounds with a newly developed cryo trap in: EUROTRAC Annual Reports, Part 4, EUROTRAC ISS Garmisch-Partenkirchen pp 120-125.

    Google Scholar 

  • Hofmann, U., (1994), Vergleichende Untersuchungen zum Austausch von reduzierten Schwefelverbindungen zwischen Vegetation und Atmosphäre im Feldversuch und unter kontrollierten Bedingungen. Dissertation, Fachbereich Biologie, Universität Mainz.

    Google Scholar 

  • Hofmann, U., Hofmann, R., Kesselmeier, J., (1992a), Field measurements of reduced sulfur compounds over wheat during a growing season. in: S.E. Schwartz, W.G.N. Slinn (eds), Precipitation Scavenging and Atmosphere-Surface Exchange. Volume 2-The Semonin Volume: Atmosphere-Surface Exchange Processes, Hemisphere, Washington DC pp. 967–977.

    Google Scholar 

  • Hofmann, U., Hofmann, R., Kesselmeier, J., (1992b), Cryogenic trapping of reduced sulfur compounds under the influence of a NAFION Dryer and cotton wadding as an oxidant scavenger. Atmos. Environ. 26, 2445–2449.

    Article  Google Scholar 

  • Hofmann, U., Protoschill-Krebs, G., Merk, L., Bingemer, H., Kesselmeier, J. Andreae, M.O., (1991), Field measurements of reduced sulphur compounds and first physiological results on the uptake of COS by higher plants. in: P. Borrell, P.M. Borrell, W. Seiler (eds), Proc. EUROTRAC Symp. ′90, SPB Academic Publishing bv, The Hague pp. 149–154.

    Google Scholar 

  • Huber, B., (1994), Austausch flüchtiger SchwefelVerbindungen in land-und forstwirtschaftlichen ökosystemen. Phd Thesis, Technische Universität München, Schriftenreihe des Fraunhofer-Institutes Band 26, Wissenschaftsverlag Maraun, Frankfurt.

    Google Scholar 

  • Jarvis, P.G., (1976), The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Phil. Trans. Roy. Soc. Lond. B273, 593–610.

    Google Scholar 

  • Kershaw, K.A., (1985), Physiological Ecology of Lichens, Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Kesselmeier, J., (1991), Emission of sulfur compounds from vegetation and global-scale extrapolation, in: Th.D. Sharkey, E.A. Holland, H.A. Mooney (eds), Trace Gas Emissions from plants, Academic Press, San Diego pp. 261–265.

    Chapter  Google Scholar 

  • Kesselmeier, J., Hofmann, U., Protoschill-Krebs, G., Hofmann, R., Merk, L., Bartell, U., Andreae, M.O., (1991), Exchange of reduced sulfur compounds between atmosphere and biosphere, in: EUROTRAC Annual Reports, Part 4, EUROTRAC ISS Garmisch-Partenkirchen pp. 162-167.

    Google Scholar 

  • Kesselmeier, J., (1992), Plant physiology and the exchange of trace gases between vegetation and the atmosphere, in: S.E. Schwartz, W.G.N. Slinn (eds), Precipitation Scavenging and Atmosphere-Surface Exchange. Volume 2-The Semonin Volume: Atmosphere-Surface Exchange Processes Hemisphere, Washington DC pp. 949-966.

    Google Scholar 

  • Kesselmeier, J., Hofmann, U., Protoschill-Krebs, G., Hofmann, R., Merk, L., Bartell, U., Velmecke, F., Andreae. M.O., (1992a), Exchange of reduced sulfur compounds between atmosphere and biosphere. in: EUROTRAC Annual Reports, Part 4, EUROTRAC ISS Garmisch-Partenkirchen pp. 202-208.

    Google Scholar 

  • Kesselmeier, J., Meixner, F.X., Hofmann, U., Ajavon, A., Leimbach, St., Andreae, M.O., (1992b), Distribution of ozone over a tropical rain forest and exchange of reduced sulfur compounds between tropical tree species and the atmosphere: Investigations from the atmospheric boundary layer, at ground level and from the top of the canopy, in: Halle, F., Pascal, O. (eds), Biologie d’une Canopée de Foret Equatoriale — IL Rapport de mission: Radeau des Cimes Octobre / Novembre 1991, Reserve de Campo, Cameroun pp. 247–263.

    Google Scholar 

  • Kesselmeier, J., Meixner, F.X., Hofmann, U., Ajavon, A., Leimbach, St., Andreae, M.O., (1993a), Reduced sulfur compound exchange between the atmosphere and tropical tree species in southern Cameroon, Biogeochem. 23, 23–45.

    Google Scholar 

  • Kesselmeier, J., Merk, L., Bliefernicht, M., Helas, G., (1993b), Trace gas exchange between terrestrial plants and atmosphere: carbon dioxide, carbonyl sulfide and ammonia under the rule of compensation points, in: Slanina, J., Angeletti, G., Beilke, S. (eds), General assessment of biogenic emissions and deposition of nitrogen compounds, sulphur compounds and oxidants in Europe, CEC Air Pollution Research Report 47, E. Guyot SA, Brussels pp 71–80.

    Google Scholar 

  • Kesselmeier, J., Hubert, A., Velmeke, F., Blezinger, S., Hofmann, U., Andreae, M.O., (1993c), Exchange of reduced sulfur compounds between leaf litter, living leaves and the atmosphere, in: EUROTRAC Annual Reports, Part 4, EUROTRAC ISS Garmisch-Partenkirchen pp. 154-159.

    Google Scholar 

  • Kesselmeier, J., Merk., L. (1993), Exchange of Carbonyl Sulfide (COS) between Agricultural Plants and the Atmosphere: Studies on the Deposition of COS to Peas, Corn and Rapeseed. Biogeochem. 23, 47–59.

    Google Scholar 

  • Kesselmeier, J., Blezinger, S., Wilhelm, C, Gries, C, Nash III, T.H., Andreae, M.O., (1994), Exchange of reduced sulfur compounds between the biosphere and the atmosphere: marine phytoplankton and lichen species, in: EUROTRAC Annual Reports, Part 4, EUROTRAC ISS Garmisch-Partenkirchen pp. 200-206.

    Google Scholar 

  • Kluczewski, S.M., Brown, K.A., Bell, J.N.B., (1985), Deposition of [35S]-carbonyl sulphide to vegetable crops, Radiat. Protect. Dosim. 11, 173–177.

    Google Scholar 

  • Lamb, B., Westberg, H., Allwine. G., Bamesberger, L., Guenther, A., (1987), Meaurement of biogenic sulfur emissions from soils and vegetation: application of dynamic enclosure methods with Natusch filter and GC/FPD analysis, J. Atmos. Chem. 5, 469–491

    Article  Google Scholar 

  • Larcher, W., (1994), Ökophysiologie der Pflanzen, 5. Auflage. Eugen Ulmer Verlag, Stuttgart

    Google Scholar 

  • Lendzian, K.J., (1987), Aufnahne und zellphysiologische Wirkunen von Luftschadstoffen, Naturwissenschaften 74, 282–288.

    Article  Google Scholar 

  • Lorenz, R., Murphy, C.H, Jr., (1985), Sulphur dioxide, carbon dioxide, and water vapout fluxmeasurements utilizing a microprocessor-controlled data acquisition system in a pine plantation, in: Hutchison, B.A., Hicks, B.B. (eds), The Forest-Atmosphere Interaction, Kluwer, Dordrecht.

    Google Scholar 

  • Lorimer, G.H., Pierce, J., (1989), Carbonyl sulphide: An alternate substrate for but not an activator of ribulose-1,5-bisphosphate carboxylase, J. Biol. Chem. 264/5, 2764–2772

    Google Scholar 

  • Materna J., (1966), Die Ausscheidung des durch die Fichtennadeln absorbierten Schwefeldioxids, Archiv für Forstwesen 15, 691–692.

    Google Scholar 

  • Matt, D.R., McMillen, R.T., Womack, J.D., Hicks B.B., (1987), A comparison of estimated and measured SO2 deposition velocities, Water Air and Soil Pollut. 36, 331–347.

    Article  Google Scholar 

  • McMillen, R.T., Matt, D.R., Hicks, B.B., Womack, J.D., (1987), Dry deposition measurements of Sulphur dioxide to a Spruce-Fir forest in the Black forest: A data report. NOAA Technical Memorandum ERL ARL-152.

    Google Scholar 

  • Meyers, T.P., Baldocchi, D.D., (1988), A comparison of models for deriving dry deposition fluxes of O3 and SO2 to a forest canopy, Tellus 40B, 270–284.

    Article  Google Scholar 

  • Mihalopoulos, N., Bonsang, B., Nguyen, B.C., Kanakidou, M., Belviso, S., (1989), Field observations of carbonyl sulfide deficit near the ground: Possible implication of vegetation, Atmos. Environ. 23, 2159–2166.

    Article  Google Scholar 

  • Miller, A.G., Espie, G.S. and Canvin, D.T., (1989), Use of carbon oxysulphide, a structural analog of CO2, to study active CO2 transport in the cyanobacterium Synechococcus UTEX 625, Plant Physiol. 90, 1221–1231.

    Article  Google Scholar 

  • Milne, J.W., Roberts, D.B., Williams, D.J., (1979), Atmos. Environ. 13, 373–379.

    Article  Google Scholar 

  • Murphy, CE., Sigmon, J.T., (1989), Dry deposition of sulphur and nitrogen oxide gases to forest vegetation, in: Lindberg S.E., Page A.L., Norton S.A. (eds), Acidic precipitation, Volume 3 Springer — Verlag, Berlin.

    Google Scholar 

  • Neumann, H.H., den Hartog, C.D., (1985), Eddy correlation measurements of atmospheric fluxes of ozone, sulphur, and particles during the campaign intercomparison study. J. Geophys. Res. 90, 2097–2110.

    Article  Google Scholar 

  • Nicholson K.W., Davies T.D., (1988), Letter to the editors: The dry deposition of sulphur dioxide at a rural site, Atmos. Environ. 22, 2885–2889.

    Article  Google Scholar 

  • Payrissat, M., Beilke, S., (1974), Laboratory measurements of the uptake of sulphur dioxide by different European soils, Atmos. Environ. 9, 211–217.

    Google Scholar 

  • Petit, C, Ledoux, M, Trinité, M., (1976), Transfer resistance to SO2 capture by some plane surfaces, water and leaves, Atmos. Environ. 11, 1123–1126.

    Google Scholar 

  • Platt, U., (1978), Dry deposition of SO2, Atmos. Environ. 12, 363–367.

    Article  Google Scholar 

  • Protoschill-Krebs, G., (1991), Untersuchungen zur Aufnahme und zum Metabolismus von Carbonylsulfid in Pflanzen. Ph.D. Thesis, Johannes-Gutenberg-University of Mainz.

    Google Scholar 

  • Protoschill-Krebs, G., Kesselmeier, J., (1992), Enzymatic pathways for the metabolization of carbonyl sulphide (COS) by higher plants, Botanica Acta 105, 206–212.

    Google Scholar 

  • Protoschill-Krebs, G., Wilhelm, C, Kesselmeier, J., (1995), The consumption of carbonyl sulphide by carbonic anhydrase (CA) of Chlamydomonas reinhardtii grown under different CO2 regimes. Botanica Acta 108, 445–448.

    Google Scholar 

  • Protoschill-Krebs, G., Wilhelm, C, Kesselmeier, J., (1996), Consumption of carbonyl sulfide by carbonic anhydrase (CA) polated from Pisum sativum. Atmos. Environ. 30, 3151–3156.

    Article  Google Scholar 

  • Ravishankara, A.R., Kreutter, N.M., Shah, R.C., Wine, P.H., (1980), Rate reaction of OH with COS. Geophys. Res. Lett. 7, 861–864.

    Article  Google Scholar 

  • Rennenberg, H., Sekijy, J., Wilson, L.G., Filner, P., (1982), Evidence for an intracellular sulfur cycle in cucumber leaves, Planta 154, 516–524.

    Article  Google Scholar 

  • Rennenberg, H., (1983), Cysteine desulhydrase activity in cucurbit plants: stimulation by preincubation with L-or D-cysteine, Phytochem. 22, 1557–1560.

    Article  Google Scholar 

  • Rennenberg, H., Filner, P., (1983), Developmental changes in the potential for H2S emission in cucurbit plants, Plant Physiol. 71, 269–275.

    Article  Google Scholar 

  • Rennenberg, H., Reski, G., Polie, A., (1983), Hydrogen sulfide emission by cultured tobacco cells, Z. Pflanzenphysiol. 111 189–202.

    Google Scholar 

  • Rennenberg, H., (1984), The fate of excess sulfur in higher plants, Ann. Rev. Plant Physiol. 35, 121–153.

    Article  Google Scholar 

  • Rennenberg, H., Arabatzis, N., Grundel, I., (1987), Cysteine desulfhydrase activity in higher plants: Evidence for the action of L-and D-cysteine specific enzymes, Phytochem. 26, 1583–1589.

    Article  Google Scholar 

  • Renneberg, H., Thoene, B., (1987), The mobility of sulphur in higher plants,. in: Proc. Int. Symp. Elemental Sulfur in Agriculture, Vol.2, Nice pp. 701-707.

    Google Scholar 

  • Rennenberg, H., (1989), Synthesis and emission of hydrogen sulfide by higher plants, in: E.S. Saltzman, W.J. Cooper (eds), Biogenic sulfur in the environment., ACS Symposium series pp. 44-57.

    Google Scholar 

  • Rennenberg, H., Lamoureux, G.L, (1990), Physiological processes that modulate the concentration of glutathione in plant cells, in: Rennenberg, H., Brunold, C, De Kok, L.J., Stulen, I. (eds), Sulfur nutrition and sulfur assimilation in higher plants, SPB Scientific Publishers, The Hague pp. 53–65.

    Google Scholar 

  • Rennenberg, H., Huber, B., Schröder, P, Stahl, K., Haunold, W., Georgii, H.-W., Slovik, S., Pfanz, H., (1990), Emission of volatile sulfur compounds from spruce trees, Plant Physiol. 92, 968–971.

    Article  Google Scholar 

  • Rennenberg, H., (1991), The significance of higher plants in the emission of sulfur compounds from terrestrial ecosystems, in: Sharkey, Th.D., Holland, E.A., Mooney, H.A. (eds), Trace Gas Emissions from Plants, Academic Press, San Diego pp. 217–260.

    Chapter  Google Scholar 

  • Rennenberg, H., Schröder, P., Huber, B., (1991), Emission of reduced sulfur compounds from agricultural and forest ecosystems, in: EUROTRAC Annual Reports, Part 4, ISS Garmisch-Partenkirchen pp. 156-162.

    Google Scholar 

  • Rennenberg, H., Schröder, P., Huber, B., (1992), Emission of sulfur compounds from spruce trees, in: Schwartz, S.E., Slinn W.G.N. (eds), Precipitation scavenging and atmosphere surface exchange processes. Hemisphere Publ. Washington pp. 979–990.

    Google Scholar 

  • Schmidt, A., Rennenberg, H., Wilson, L.G., Filner, P., (1985), Formation of methanethiol from methionine by leaf tissue, Phytochem. 24, 1181–1185.

    Article  Google Scholar 

  • Schröder, P., (1993), Plants as sources of atmospheric sulfur, in: L.J. DeKok et al. (eds), Sulfur Nutrition and Assimilation in Higher Plants, SPB Academic Publishing bv, The Hague pp. 253–270.

    Google Scholar 

  • Schütz, B., DeKok, L.J., Rennenberg, H., (1991), Thiol accumulation and cysteine desulfhydrase activity in H2S fumigated leaves and leaf homogenates of cucurbit plants, Plant Cell Physiol 32/5, 733–736.

    Google Scholar 

  • Schwenn, J.D., Schriek, U., Kilz, H.H., (1982), Dissimilation of methionine in cell suspension cultures from Catharanthus roseus L., Planta 158, 540–549.

    Article  Google Scholar 

  • Seinfeld, J.H., (1986), Atmospheric chemistry and physics of air pollution. John Wiley and Sons, New York.

    Google Scholar 

  • Sekiya, J., Schmidt, A., Rennenberg, H., Wilson, L.G., Filner, P., (1982), Hydrogen sulfide emission by cucumber leaves in response to sulfate in light and dark, Phytochem. . 21, 2173–2178.

    Article  Google Scholar 

  • Sekiya, J., Schmidt, A., Wilson, L.G., Filner, P., (1982), Emission of hydrogen sulfide by leaf tissue in response to L-cysteine, Plant Physiol. 70, 430–436.

    Article  Google Scholar 

  • Spaleny, S., (1977), Sulphate transformation to hydrogen sulphide in spruce seedlings. Plant and Soil 48, 557–563.

    Article  Google Scholar 

  • Tarrason, L., Turner, S., Floisand, I., (1995), An estimation of seasonal DMS fluxes over the North Atlantic Ocean and their contribution of European pollution levels. J. Geophys. Res. in press.

    Google Scholar 

  • Taylor, G.E., Tingley, D.T., (1983), Sulphur dioxide flux into leaves of Geranium carolinianum L., Plant Physiology 72, 237–244.

    Article  Google Scholar 

  • Taylor, G.E., McLaughlin, S.B., Shriner, D.S., Selvidge, W.J., (1983), The flux of sulfur-containing gases to vegetation, Atmos. Environ. 17, 789–796.

    Article  Google Scholar 

  • Thorn, A.S., (1975), Momentum, mass and heat exchange of plant communities, in: Monteith J.L. (ed), Vegetation and Atmosphere, Academic Press, London pp. 58–109.

    Google Scholar 

  • Turco, R.P., Whitten, R.C., Toon, O.B., Pollack, J.B., Hamill, P., (1980), OCS, stratospheric aerosols and climate, Nature 283, 283–286.

    Article  Google Scholar 

  • Valdez, M.P., Bales, R.C., Stanley, D.A., Dawson, G.A., (1987), Gaseous deposition to snow 1. Experimental study of SO2 and NO2 deposition, J. Geophys. Res. 92, 9779–9787.

    Article  Google Scholar 

  • van Dop, H., (1983), Terrain classification and derived meteorological parameters for interregional transport models, Atmos. Environ. 17, 1099–1105.

    Article  Google Scholar 

  • van Hove, L.W.A., (1989), The mechanism of NH3 and SO2 uptake by leaves and its physological effects. Thesis, University of Wageningen, the Netherlands.

    Google Scholar 

  • Vermetten, A.W.M., Hofschreuder, P., Duyzer, J.H., Diederen, H.S.M.A., Bosveld, F.C., Bouten, W., (1992), Dry deposition of SO2 onto a stand of Douglas fir: The influence of canopy wetness, in: S.E. Schwartz, W.G.N. Slinn (eds), Precipitation Scavenging and Atmosphere-Surface Exchange. Volume 3-The Summers Volume: Applications and Appraisals, Hemisphere, Washington DC pp. 1403–1414.

    Google Scholar 

  • Voldner, E.C., Barrie, L.A., Sirois, A., (1986), A literature review of dry deposition of oxides of sulfur and nitrogen with emphasis on long-range transport modelling in North America, Atmos. Environ. 20, 2101–2123.

    Article  Google Scholar 

  • Warneck, P., (1988), Chemistry of the Natural Atmosphere. International Geophysics Series Vol. 41 Dmowska, R., Holton, J.R. (eds), Academic Press, San Diego, USA.

    Google Scholar 

  • Welphdale, D.M., Shaw, R.W., (1974), Sulphur dioxide removal by turbulent transfer over grass, snow, and water surfaces, Tellus 26, 196–204.

    Article  Google Scholar 

  • Wesely, M.L., Hicks B.B., (1977), Some factors that affect the deposition rates of sulfur dioxide and similar gases on vegetation, J. Air Poll. Contr. Ass., 27, 1110–1116.

    Article  Google Scholar 

  • Wesely, M.L., Sisteron, D.L, Jastrow, J.D., (1990), Observations of the chemical properties of dew on vegetation that affect the dry deposition of SO2, J. Geophys. Res. 95, 7501–7514.

    Article  Google Scholar 

  • Whitmore, M.E., Freer-Smith, P., (1982), Growth effects of SO2 an/or NO2 on woody plants and grasses during spring and summer, Nature 300, 55–56.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kesselmeier, J., Schröder, P., Erisman, J.W. (1997). Exchange of Sulfur Gases between the Biosphere and the Atmosphere. In: Slanina, S. (eds) Biosphere-Atmosphere Exchange of Pollutants and Trace Substances. Transport and Chemical Transformation of Pollutants in the Troposphere, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03394-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03394-4_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08273-3

  • Online ISBN: 978-3-662-03394-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics