Skip to main content

Abstract

The plasmalemma or plasma membrane surrounds the yeast cell and is visible in an electron micrograph as a dark double-layered cellular boundary (Fig. 7.1). It comprises a hydrophobic middle layer within a hydrophilic mantle (the electron-dense layers). Biological membranes separate compartments and allow a controlled exchange of solutes between them. The plasma membrane encloses the cell and controls the selective uptake of nutrients and extrusion of metabolic products. The nucleus and mitochondria are enclosed by double membranes; the vacuoles, Golgi complex, and other vesicles by single ones. An endoplasmic reticulum is present. The subcellular membranes each perform specific tasks during metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anraku Y, Umemoto N, Hirata R, Wada Y (1989) Structure and function of the yeast vacuolar membrane proton ATPase. J Bioenerg Biomembr 21: 589–603

    Article  PubMed  CAS  Google Scholar 

  • Becker DM, Guarente L (1991) High efficiency transformation of yeast by electroporation. Methods Enzymol 194: 182–187

    Article  PubMed  CAS  Google Scholar 

  • Dayson H, Danielli JF (1943) The permeability of natural membranes. Cambridge Univ. Press, Cambridge and New York

    Google Scholar 

  • Driessen AJM, Konings WN (1993) Insertion of lipids and proteins into bacterial membranes by fusion with liposomes. Methods Enzymol 221: 394–408

    Article  PubMed  CAS  Google Scholar 

  • Evans WH, Graham JM (1989) Membrane structure and function. IRL Press at Oxford University Press, Oxford

    Google Scholar 

  • Gläser H-U, Höfer M (1987) Ion-dependent generation of the electrochemical proton gradient 0µ ir in reconstituted plasma membrane vesicles from the yeast Metschnikowia reukaufti. Biochim Biophys Acta 905: 287–294

    Article  PubMed  Google Scholar 

  • Goffeau A (1993) Transport ATPases and yeast metabolism. In: Scheffers WA, van Dijken JP (eds) Metabolic compartmentation in yeast. Pasmans, The Hague, pp 42–44

    Google Scholar 

  • Goffeau A, Green NM (1990) The H’-ATPase from fungal plasma membrane. In: Pasternak CA (ed) Monovalent cations in biological systems. CRC Press, Boca Raton, pp 155–169

    Google Scholar 

  • Goswitz VC, Brooker RJ (1995) Structural features of the uniporter/symporter/antiporter superfamily. Protein Sci 4: 534–537

    Article  PubMed  CAS  Google Scholar 

  • Gustin MC, Martinac B, Saimi Y, Culbertson MR, Kung C (1986) Ion channels in yeast. Science 233: 1195–1197

    Article  PubMed  CAS  Google Scholar 

  • Harold FM (1986) The vital force: a study of bioenergetics. W.H. Freeman and Company, New York

    Google Scholar 

  • Hille B (1992) Ionic channels of excitable membranes. Sinauer Associates Inc., Sunderland, MA

    Google Scholar 

  • Higgins CF (1992) ABC transporters: from microorganisms to man. Annu Rev Cell Biol 8: 67–113

    Article  PubMed  CAS  Google Scholar 

  • Höfer M (1981) Transport across biological membranes. Pitman Publish Ltd, London

    Google Scholar 

  • Höfer M (1989) Accumulation of electroneutral and charged carbohydrates by proton cotransport in Rhodotorula. Methods Enzymol 174: 623–653

    Article  Google Scholar 

  • Höfer M, Gläser H-U (1989) K’ ions stimulate both ATPase activity and ApH generation in reconstituted yeast plasma membrane vesicles. In: Kotyk A, Skoda J, Paces V, Kostka V (eds) Highlights of modern biochemistry. VPS International, Utrecht, vol I, pp 753–760

    Google Scholar 

  • Höfer M, Mair T, Wernsdörfer E (1991) Reconstituted plasma membrane vesicles: a tool to study transport in yeast. In: Prasad R (ed) Yeast molecular biology and biotechnology. Omega Sci Publ, New Delhi, pp 239–253

    Google Scholar 

  • Höfer M, Calahorra M, Klein B, Pana A (1995) Assessment of AfH in Schizosaccharomyces pombe; intracellular inclusion of impermeable agents by electroporesis. Folia Microbiol 40: in press

    Google Scholar 

  • Hofstee BHJ (1959) Non-inverted versus inverted plots in enzyme kinetics. Nature 184: 1296–1298

    Article  PubMed  CAS  Google Scholar 

  • Ko CH, Liang H, Gaber RF (1993) Roles of multiple glucose transporters in Saccharomyces cerevisiae. Mol Cell Biol 13: 638–648

    PubMed  CAS  Google Scholar 

  • Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157: 105–132

    Article  PubMed  CAS  Google Scholar 

  • van Leeuwen CCM, Postma E, van den Broek PJA, van Steveninck J (1991) Proton-motive force-driven n-galactose transport in plasma membrane vesicles from the yeast Kluyveromyces marxianus. J Biol Chem 226: 12146–12151

    Google Scholar 

  • Lichtenberg H-C, Giebeler H, Höfer M (1988) Measurements of electrical potential differences across yeast plasma membranes with microelectrodes are consistent with values from steady-state distribution of tetraphenylphosphonium in Pichia humboldtii. J Membr Biol 103: 255–261

    Article  CAS  Google Scholar 

  • Mair T, Höfer M (1988) ATP-induced generation of pH gradient and/or membrane potential in reconstituted plasma membrane vesicles from Schizosaccharomyces porn be. Biochem Int 17: 593–604

    CAS  Google Scholar 

  • Marger MD, Saier MH Jr (1993) A major superfamily of transmembrane facilitators that catalyze uniport, symport and antiport. Trends Biochem Sci 18: 13–20

    Article  PubMed  CAS  Google Scholar 

  • Milbradt B, Höfer M (1995) Glucose-transport-deficient mutants of Schizosaccharomyces pombe: phenotype, genetics and use for genetic complementation. Microbiol 140: 2617–2623

    Google Scholar 

  • Michaelis L, Menten ML (1913) Kinetics of invertase action. Biochem Z 49: 333–369

    CAS  Google Scholar 

  • Mitchell P (1966) Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol Rev 41: 445–502

    Article  PubMed  CAS  Google Scholar 

  • Özcan S, Johnston M (1995) Three different regulatory mechanisms enable yeast hexose transporter (HXT) genes to be induced by different levels of glucose. Mol Cell Biol 15: 1564–1572

    PubMed  Google Scholar 

  • Pena A, Ramirez J, Rosas G, Calahorra M (1995) Proton pumping and the internal pH of yeast cells, measured with pyranine introduced by electroporation. J Bacteriol 177: 1017–1022

    PubMed  CAS  Google Scholar 

  • Prasad R (1985) Lipids in the structure and function of yeast membranes. Adv Lipid Res 21: 187–242

    PubMed  CAS  Google Scholar 

  • Reifenberger E, Freidel K, Ciriacy M (1995) Identification of novel HXT genes in Saccharomyces cerevisiae reveals the impact of individual hexose transporters on glycolytic flux. Mol Microbiol 16: 157–167

    Article  PubMed  CAS  Google Scholar 

  • Robertson JD (1964) Unit membranes: a review with recent new studies of experimental alterations and a new subunit structure in synaptic membranes. In: Locke M (ed) Cellular membranes in development. Academic Press, New York, pp 1–81

    Google Scholar 

  • Rose MD (1987) Isolation of genes by complementation in yeast. Methods Enzymol 152: 481–511

    Article  PubMed  CAS  Google Scholar 

  • Smith C, Wood EJ (1991) Energy in biological systems. Chapman and Hall, London

    Google Scholar 

  • Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175: 720–731

    Article  PubMed  CAS  Google Scholar 

  • Vacata V, Höfer M, Larsson HP, Lecar H (1993) Ionic channels in the plasma membrane of Schizosaccharomyces pombe: evidence from patch-clamp measurements. J Bioenerg Biomembr 24: 43–53

    Article  Google Scholar 

  • Van der Rest ME, Kamminga AH, Nakano A, Anraku Y, Poolman B, Konings WN (1995) The plasma membrane of Saccharomyces cerevisiae: structure, function and biosynthesis. Microbiol Rev 59: 304–322

    PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Höfer, M. (1997). Membranes. In: Spencer, J.F.T., Spencer, D.M. (eds) Yeasts in Natural and Artificial Habitats. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03370-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03370-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08160-6

  • Online ISBN: 978-3-662-03370-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics