Skip to main content

Biosynthesis of 1-Alkyl-2-Acetyl-sn-Glycero-3-Phosphocholine (Platelet Activating Factor) in Cultured Neuronal and Glial Cells

  • Conference paper
Phospholipids and Signal Transmission

Part of the book series: Nato ASI Series ((volume 70))

Abstract

Platelet Activating Factor (PAF; 1-alkyl-2-acetyl-sn-glycero-3-phospho-choline) has been detected in the nervous tissue (Tokumura et al., 1987). In this tissue, much evidence supports the hypothesis that PAF is involved in physiological functions and in pathological situations (for review see Goracci, 1990). In fact, PAF induces neuronal differentiation (Kornecki and Ehrlich, 1988) and the stimulation of chick retina with neurotransmitters led to the production of PAF (Bussolino et al., 1986; Bussoli no et al., 1988a). In addition, PAF levels in brain increased during ischemia and convulsions (Feuerstein and Yue, 1989; Kumar et al., 1988). These observations also support the concept that this lipid mediator may have a role in brain dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Altman J (1969) DNA metabolism and cell proliferation. In: Lajtha A (ed) Handbook of Neurochemistry, vol II. Plenum Press, New York, p 157

    Google Scholar 

  • Bensted JPM, Dobbing J, Morgan RS, Reid RTW, Payling-Wright G (1957) Neurological development and myelination in the spinal cord of chick embryo. J Embryol Exp Morphol 5:428–431

    Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction. Can J Biochem Physiol 37:911–917

    Article  PubMed  CAS  Google Scholar 

  • Booher J, Sensenbrenner M (1972) Growth and cultivation of dissociated neurons and glial cells from embryonic chick, rat and human brain in flask cultures. Neurobiology 2:97–105

    PubMed  CAS  Google Scholar 

  • Bussolino F, Gremo F, Tetta C., Pescarmona GP, Camussi G (1986) Production of platelet-activating factor by chick retina. J Biol Chem. 261:16502–16508.

    PubMed  CAS  Google Scholar 

  • Bussolino F, Pescarmona G, Camussi G, Gremo F (1988a) Acetylcholine and dopamine promote the production of platelet activating factor in immature cells of chick embryonic retina. J Neurochem 51: 1755–1759

    Article  PubMed  CAS  Google Scholar 

  • Bussolino F, Tessari F, Turrini F, Braquet P, Camussi G, Prosdocimi M, Bosia A (1988b) Platelet-activating factor induces dopamine release in PC-12 cell line. Am J Physiol 255: (Cell Physiol) 24:C559-C565

    PubMed  CAS  Google Scholar 

  • Camussi G, Aglietta M, Malavasi F, Tetta C., Sanavio F, Piacibello W, Bussolino F (1983) The release of platelet-activating factor from human endothelial cells in culture. J Immunol 131:2397–2401

    PubMed  CAS  Google Scholar 

  • Dreyfus H, Harth S, Massarelli R, Louis JC (1981) Mechanisms of differentiation in cultured neurons: involvement of gangliosides. In: Rapport MM, Gorio A (eds) Gangliosides in Neurological and Neuromuscular Function, Development and Repair. Raven Press, New York, p 151

    Google Scholar 

  • Feuerstein G, Yue TL (1989) PAF as a putative mediator in cardiac and cerebrovascular disease. In: Saito K, Hanahan DJ (eds) Platelet-Activating Factor and diseases. International Medical Publ, Tokyo, p 103

    Google Scholar 

  • Francescangeli E, Goracci G (1989) The de novo biosynthesis of Platelet-Activating Factor in rat brain. Biochem Biophys Res Commun 161: 107–112

    Article  PubMed  CAS  Google Scholar 

  • Freysz L, Lastennet A, Mandel P (1972) Phosphocholine diglyceride transferase activity during development of the chick brain. J Neurochem 19:2599–2605

    Article  PubMed  CAS  Google Scholar 

  • Freysz L, Horrocks LA, Mandel P (1980) Activities of enzymes synthesizing diacyl, alkylacyl and alkenylacyl glycerophosphocholine during development of chick brain. J Neurochem 34:961–969

    Google Scholar 

  • Ghigo D, Bussolino F, Gamberino G, Heller R, Turrini F, Pescarmona G, Cragoe EJ, Pegoraro L, Bosia A (1988) Role of Na+/H+exchange in the thrombin-induced platelet-activating factor production by human endothelial cells. J Biol Chem 253:19437–19446

    Google Scholar 

  • Gomez-Cambronero J, Inarrea P, Alonso F, Sanchez-Crespo M (1984) The role of calcium ions in the process of acetyl transferase activation during the formation of platelet-activating factor (PAF-acether). Biochem J 219:419–424

    PubMed  CAS  Google Scholar 

  • Gomez-Cambronero J, Velasco S, Maton JM, Sanchez-Crespo M (1985) Modulation of lyso-platelet activating factor:acetylCoA acetyl transferase from rat splenic microsomes. Biochim. Biophys. Acta 845, 515–519.

    Google Scholar 

  • Goracci G (1990) PAF in the nervous system: biochemistry and pathophysiology. In: Krieglstein J and Oberpichler H (eds) Pharmacology of Cerebral Ischemia, Wissenschaftliche Verlagsgesellshaft, Stuttgart, p 377

    Google Scholar 

  • Goracci G, Francescangeli E (1991) Properties of PAF-synthesizing phosphocholinetransferase and evidence for Lyso-PAF acetyl transferase activity in rat brain. Lipids, 26:986–991

    Article  PubMed  CAS  Google Scholar 

  • Judes C., Sensenbrenner M, Mandel P, Jacob M (1968) Differentiating cells of chick embryo hemispheres: Characterization and quantitative evaluation of cell types and bulk preparation of enriched fractions. Z Zellforsch Mikrosk Anat 89:137–150

    Article  PubMed  CAS  Google Scholar 

  • Kornecki E, Ehrlich YH (1988) Neuroregulatory and neuropathological actions of the ether-phospholipid platelet-activating factor. Science 240:1792–1794

    Article  PubMed  CAS  Google Scholar 

  • Kumar R, Harvey SAK, Kester M, Hanahan DJ, Olson MS (1988) Production and effects of platelet-activating factor in the rat brain. Biochim Biophys Acta 963:375–383

    Article  PubMed  CAS  Google Scholar 

  • Kurihara T, Tsukada Y (1968) 2′,3′-Cyclic nucleotide-3′-phosphodiesterase in the developing chick brain and spinal cord. J Neurochem 15:827–832

    Article  PubMed  CAS  Google Scholar 

  • Junier MP, Tiberghien C., Rougeot C., Fareur V, Dray F (1988) Inhibitory effect of platelet activating factor on LHRH and somatostatin release on rat medial eminence in vitro correlated with the the characterization of specific binding sites in rat hypothalamus. Endocrinology 123: 72–80

    Article  PubMed  CAS  Google Scholar 

  • Lee T-C, Malone B, Snyder F (1986) A new de novo pathway for the formation of 1-alkyl-2-acetyl-sn-glycerols, precursors of platelet-activating factor. Biochemical characterization of 1-alkyl-2-lyso-sn-glycero-3-P acetyl transferase in rat spleen. J Biol Chem 261:5373–5377

    PubMed  CAS  Google Scholar 

  • Lee T-C, Malone B, Snyder F (1988) Formation of 1-alkyl-2-acetyl-sn-glycerols via the de novo biosynthetic pathway for platelet-activating factor. Biochemical characterization of 1-alkyl-2-acetyl-sn-glycero-3-P phosphohydrolase in rat spleen. J Biol Chem 263:9181–9187

    Google Scholar 

  • Louis JC, Pettmann B, Courageot J, Rumigny JF, Mandel P, Sensenbrenner M (1981) Developmental changes in cultured neurones from chick embryo cerebral hemispheres. Exp Brain Res 42:63–72

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall J (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Marcheselli VL, Rossowska MJ, Domingo MT, Braquet P, Bazan NG (1990) Distinct platelet-activating factor binding sites in synaptic endings and intracellular membranes of rat cerebral cortex. J Biol Chem 265:9140–9145

    PubMed  CAS  Google Scholar 

  • Ninio E, Mencia-Huerta JM, Benveniste J (1983) Biosynthesis of platelet-activating factor (PAF-acether). V. Enhancement of acetyl transferase activity in murine peritoneal cells by calcium ionophore A23187. Biochim Biophys Acta 751:298–304

    Article  PubMed  CAS  Google Scholar 

  • Nurenberger JI (1958) Direct enumeration of cells of the brain. In: Windle WF (ed) Biology Neuroglia, Charles C Thomas, Springfield, 111, p 193

    Google Scholar 

  • Pettmann B, Louis JC, Sensenbrenner M (1979) Morphological and biochemical maturation of neurons cultured in the absence of glial cells. Nature 281:378–380

    Article  PubMed  CAS  Google Scholar 

  • Reddick YL (1951) Histogenesis of the cellular elements in the postodic medulla of the chick embryo. Anat. Rec 109:81–97

    Article  PubMed  CAS  Google Scholar 

  • Romanoff AL (1960) The nervous system. In: Romanoff AL (ed) Avian Embryo. McMillan, New York, p 209

    Google Scholar 

  • Snyder F (1987) The significance of dual pathways for the biosynthesis of platelet activating factor: l-alkyl-2-lyso-sn-glycero-3-phosphate as a branchpoint. In: Winslow CM, Lee ML (eds) New Horizons in Platelet Activating Factor Research. Wiley and Sons Ltd, New York, p 13

    Chapter  Google Scholar 

  • Sogos V, Bussolino F, Pilia E, Torelli S, Gremo F (1990) Acetyl-choline-induced production of platelet-activating factor by human fetal brain cells in culture. J Neurosci Res 27:706–711

    Article  PubMed  CAS  Google Scholar 

  • Tokumura A, Kamiyasu K, Takauchi K, Tsukatami H (1987) Evidence for the existence of various homologoues and analogues of platelet-activating factor in a lipid extract from bovine brain. Biochem Biophys Res Commun 145:415–425

    Article  PubMed  CAS  Google Scholar 

  • Woelk H, Goracci G, Porcellati G (1974) The action of brain phospholipase A2 on purified specifically labeled 1,2-diacyl, 2-acyl-1-alk-1′-enyl, and 2-acyl-1-alkyl-sn-glycero-3-phosphorylcholine. Hoppe-Seyler’s Z Physiol Chem 355:75–81

    Article  PubMed  CAS  Google Scholar 

  • Woodard DS, Lee T-c, Snyder F (1987) The final step in the de novo biosynthesis of platelet-activating factor. Properties of a unique CDP-choli ne : 1-alkyl-2-acetyl-sn-glycerol choli nephosphotransferase in microsomes from renal inner medulla of rats. J Biol Chem 262:2520–2527

    PubMed  CAS  Google Scholar 

  • Yue T-L, Lysko PG, Feuerstein J (1990) Production of platelet-activating factor from rat cerebellar granule cells in culture. J Neurochem 54:1809–1811

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Francescangeli, E., Freysz, L., Dreyfus, H., Boila, A., Goracci, G. (1993). Biosynthesis of 1-Alkyl-2-Acetyl-sn-Glycero-3-Phosphocholine (Platelet Activating Factor) in Cultured Neuronal and Glial Cells. In: Massarelli, R., Horrocks, L.A., Kanfer, J.N., Löffelholz, K. (eds) Phospholipids and Signal Transmission. Nato ASI Series, vol 70. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-02922-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-02922-0_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-02924-4

  • Online ISBN: 978-3-662-02922-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics