Skip to main content

Quantum Tunnelling of Electrons Through III–V Heterostructure Barriers

  • Conference paper
Two-Dimensional Systems: Physics and New Devices

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 67))

Abstract

The effective mass theory of tunnelling through heterostructure barriers and its limitations is. outlined. Experimental investigations of the effect of hydrostatic pressure (up to 15 kilobar) and magnetic field (up to 11T) on the low temperature J(V) characteristics of single barrier n+GaAs/(AlGa)As/n-GaAs/ n+GaAs tunnelling structures are reported. The pressure dependence is accurately described by the effective mass/WKB model up to 10 kilobar. At higher pressure the observed breakdown of the model indicates the onset of band structure effects associated with the higher (X) conduction band minima. The reduction of the tunnelling current in an applied magnetic field is discussed in terms of the effect of the diamagnetic energy in increasing the height of the potential barrier.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Esaki, Proc. Int. Conf. on Phys. of Semiconductors, San Francisco, pp.473–83 publ. Springer (1984).

    Google Scholar 

  2. T.C.L.G. Sollner, P.E. Tannenwald, D.C. Peck and W.D. Goodhue, Appl. Phys. Lett. 45, 1319 (1984).

    Article  CAS  Google Scholar 

  3. M. Heiblum, M.I. Nathan, D.C. Thomas and C.M. Knoedler, Phys. Rev. Lett., 55, 2200 (1985).

    Article  CAS  Google Scholar 

  4. A.R. Bonnefoi, D.H. Chow and T.C. McGill, Appl. Phys. Lett., 47 888 (1985).

    Article  CAS  Google Scholar 

  5. LandoTt-Bornstein 17 Semiconductors III — V Compounds p.334 (1984).

    Google Scholar 

  6. T.W. Hickmott, P.M. Solomon, R. Fischer and H. Markoc, Appl. Phys. Lett. 44, 90 (1984).

    Article  CAS  Google Scholar 

  7. D.C. Taylor, P.S.S. Guimaraes, B.R. Snell, L. Eaves, F.W. Sheard, G.A. Toombs and K.E. Singer, 4th Int. Conf. on Hot Electrons in Semiconductors, Innsbruck, Physica B 134, 12 (1985) see also G.A. Toombs, F.W. Sheard and L. Eaves, Proc. 2nd Int. Conf. on Phonon Physics, Budapest, 1985 (in press).

    CAS  Google Scholar 

  8. E.O. Kane, J. Appl. Phys. 32, 83 (1961).

    Article  Google Scholar 

  9. M. Jaros, Rep. Prog. Phys. 48, 1091 (1985).

    Article  CAS  Google Scholar 

  10. A.C. Marsh and J.C. Inkson, J. Phys. C.: Sol. St. Phys. 17 6561 (1984).

    Article  CAS  Google Scholar 

  11. D.C. Taylor, P.S.S. Guimaraes, B.R. Snell, F.W. Sheard, L. Eaves, G.A. Toombs, J.C. Portal, L. Dmowski, K.E. Singer, G. Hill and M.A. Pate, Proc. Int. Conf. on Modulated Semiconductor Structures, Kyoto (Surf. Science 1986).

    Google Scholar 

  12. P.S.S. Guimaraes, D.C. Taylor, B.R. Snell, L. Eaves, K.E. Singer, G. Hill, M.A. Pate, G.A. Toombs and F.W. Sheard, J. Phys. C.: Sol. St. Phys. 18, L605–9 (1985).

    Article  CAS  Google Scholar 

  13. L. Eaves, P.S.S. Guimaraes, F.W. Sheard, B.R. Snell, D.C. Taylor, G.A. Toombs and K.E. Singer, J. Phys. C.: Sol. St. Phys. 18, L885–9 (1985).

    Article  CAS  Google Scholar 

  14. L. Eaves, P.S.S. Guimaraes, B.R. Snell, D.C. Taylor, K.E. Singer, Phys. Rev. Lett. 53, 262 (1985).

    Article  Google Scholar 

  15. G.D. Pitt, J. Lees, R.A. Hoult and R.A. Stradling, J. Phys. C 6 (1973), 3282.

    Article  CAS  Google Scholar 

  16. L.G. Shantharama, A.R. Adams, C.N. Ahmad and R.J. Nicholas, J. Phys. C 17 (1984), 4429.

    Article  CAS  Google Scholar 

  17. N. Lifshitz, A. Jayaraman, R.A. Logan and R.C. Maines, Phys. Rev. B20, (1979), 2398.

    Google Scholar 

  18. Shubnikov-de Haas experiments on n (AlGa)As layers (Al = 0.3) (J.C. Portal, private communication) show a dramatic decrease in electron concentration in the r minimum at 11 kbar, indicating a r-X crossover.

    Google Scholar 

  19. K.W.H. Stevens, Eur. J. Phys. 1, (1980), 98.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Eaves, L., Taylor, D.C., Portal, J.C., Dmowski, L. (1986). Quantum Tunnelling of Electrons Through III–V Heterostructure Barriers. In: Bauer, G., Kuchar, F., Heinrich, H. (eds) Two-Dimensional Systems: Physics and New Devices. Springer Series in Solid-State Sciences, vol 67. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-02470-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-02470-6_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-02472-0

  • Online ISBN: 978-3-662-02470-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics