Skip to main content

Artificial intelligence for automated driving – quo vadis?

  • Conference paper
  • First Online:
Automatisiertes Fahren 2019

Part of the book series: Proceedings ((PROCEE))

Zusammenfassung

Making Automated Driving (AD) a reality is a challenging task and still subject of intensive research and development. The core component for realizing AD beside the actual vehicle platform and the sensors for perceiving the environment is the AD system, i.e., the software that enables a vehicle to perform distinct dynamic driving tasks in a distinct operational design domain. Briefly speaking, an operational design domain defines environmental and time-of-delay conditions and restrictions, respectively, the presence or absence of certain traffic, and roadway characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. S. Russell and P. Norvig, Artificial Intelligence - A Modern Approach, 2016.

    Google Scholar 

  2. R. C. Arkin, Behavior-Based Robotics, 1998.

    Google Scholar 

  3. R. Bellman, An Introduction to Artificial Intelligence: Can Computers Think?, 1978.

    Google Scholar 

  4. P. H. Winston, Artificial Intelligence, 1992.

    Google Scholar 

  5. E. Rich and K. Knight, Artificial Intelligence, 1991.

    Google Scholar 

  6. D. I. Poole, R. G. Goebel and A. K. Mackworth, Computational Intelligence: A Logical Approach, 1998.

    Google Scholar 

  7. R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, 1998.

    Google Scholar 

  8. S. D. Pendleton, H. Andersen, X. Du, X. Shen, M. Meghjani, Y. H. Eng, D. Rus and M. H. Ang, “Perception, Planning, Control, and Coordination for Autonomous Vehicles,” 2017.

    Google Scholar 

  9. A. Swief and M. El-Habrouk, “A survey of Automotive Driving Assistance Systems technologies,” 2018.

    Google Scholar 

  10. A. Mousavian, D. Anguelov, J. Flynn and J. Kosecka, “3D Bounding Box Estimation Using Deep Learning and Geometry,” 2017.

    Google Scholar 

  11. X. Chen, K. Kundu, Z. Zhang, H. Ma, S. Fidler and R. Urtasun, “Monocular 3D Object Detection for Autonomous Driving,” 2016.

    Google Scholar 

  12. Y. Xiang, W. Choi, Y. Lin and S. Savarese, “Subcategory-aware Convolutional Neural Networks for Object Proposals and Detection,” 2017.

    Google Scholar 

  13. D. Feng, L. Rosenbaum and K. Dietmayer, “Towards Safe Autonomous Driving: Capture Uncertainty in the Deep Neural Network For Lidar 3D Vehicle Detection,” 2018.

    Google Scholar 

  14. B. Yang, W. Luo and R. Urtasun, “PIXOR: Real-time 3D Object Detection from Point Clouds,” 2019.

    Google Scholar 

  15. C. R. Qi, H. Su, K. Mo and L. J. Guibas, “PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation,” 2017.

    Google Scholar 

  16. H. Gao, B. Cheng, J. Wang, K. Li, J. Zhao and D. Li, “Object Classification using CNN-based Fusion of Vision and LIDAS in Autonomous Vehicle Environment,” 2018.

    Google Scholar 

  17. D. Maturana and S. Scherer, “VoxNet: A 3D Convolutional Neural Network for real-time object recognition,” 2015.

    Google Scholar 

  18. C. R. L. W. Qi, C. Wu, H. Su and L. J. Guibas, “Frustum PointNets for 3D Object Detection from RGB-D Data,” 2018.

    Google Scholar 

  19. Z. Wang, W. Zhan and M. Tomizuka, “Fusing Bird View LIDAR Point Cloud and Front View Camera Image for Deep Object Detection,” 2018.

    Google Scholar 

  20. E. Arnold, O. Y. Al-Jarrah, M. Dianati, S. Fallah, D. Oxtoby and A. Mouzakitis, “A Survey on 3D Object Detection Methods for Autonomous Driving Applications,” 2019.

    Google Scholar 

  21. I. A. Tarmizi and A. A. Aziz, “Vehicle Detection Using Convolutional Neural Network for Autonomous Vehicles,” 2018.

    Google Scholar 

  22. G. Melotti, “Multimodal CNN Pedestrian Classification: a Study on Combining LIDAR and Camera Data,” 2018.

    Google Scholar 

  23. J. Schlosser, C. K. Chow and Z. Kira, “Fusing LIDAR and images for pedestrian detection using convolutional neural networks,” 2016.

    Google Scholar 

  24. D. A. Ridel, E. Rehder, M. Lauer, C. Stiller and D. Wolf, “A Literature Review on the Prediction of Pedestrian Behavior in Urban Scenarios,” 2018.

    Google Scholar 

  25. S. Jugade, A. Victorino, V. Berge-Cherfaoui and S. Kanarachos, “Sensor based Prediction of Human Driving Decisions using Feed forward Neural Networks for Intelligent Vehicles,” 2018.

    Google Scholar 

  26. J. &. C. H. Kim, M. Hwangbo, J. Choi, J. Canny and Y. Kwon, “Deep Traffic Light Detection for Self-driving Cars from a Large-scale Dataset,” 2018.

    Google Scholar 

  27. X. Li, J. Li, X. Hu and J. Yang, “Line-CNN: End-to-End Traffic Line Detection With Line Proposal Unit,” 2019.

    Google Scholar 

  28. W. Schwarting, J. Alonso-Mora and D. Rus, “Planning and Decision-Making for Autonomous Vehicles,” 2018.

    Google Scholar 

  29. T. Okuyama, T. Gonsalves and J. Upadhay, “Autonomous Driving System based on Deep Q Learning,” 2018.

    Google Scholar 

  30. T. P. Lillicrap, J. J. P. A. Hunt, N. Heess, T. Erez, Y. Tassa, D. Silver and D. Wierstra, “Continuous control with deep reinforcement learning,” 2016.

    Google Scholar 

  31. Y. Zhang, P. Sun, Y. Yin, L. Lin and X. Wang, “Human-like Autonomous Vehicle Speed Control by Deep Reinforcement Learning with Double QLearning,” 2018.

    Google Scholar 

  32. M. Kaushik, V. Prasad, M. Krishna and B. Ravindran, “Overtaking Maneuvers in Simulated Highway Driving using Deep Reinforcement Learning,” 2018.

    Google Scholar 

  33. P. Wang, C.-Y. Chan and A. de La Fortelle, “A Reinforcement Learning Based Approach for Automated Lane Change Maneuvers,” 2018.

    Google Scholar 

  34. W. Yuan, M. Yang, H. Li, C. Wang and B. Wang, “End-to-end learning for highprecision lane keeping via multi-state model,” 2018.

    Google Scholar 

  35. Y.-K. &. H. C.-Y. Lai, Y.-H. Huang, C.-W. Huang, Y.-X. Kuo and Y.-C. Chung, “Intelligent Vehicle Collision-Avoidance System with Deep Learning,” 2018.

    Google Scholar 

  36. M. Morsali, J. Aslund and E. Frisk, “Trajectory Planning for Autonomous Vehicles in Time Varying Environments Using Support Vector Machines,” 2018.

    Google Scholar 

  37. M. Braun, S. Krebs, F. Flohr and D. M. Gavrila, “The EuroCity Persons Dataset: A Novel Benchmark for Object Detection,” 2018.

    Google Scholar 

  38. D. M. Gavrila, “EuroCity Persons: A Novel Benchmark for Vulnerable Road User Detection (invited talk),” in ECCV, 2018.

    Google Scholar 

  39. C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li, L. Fei-Fei, Y. A. J. Huang and K. Murphy, “Progressive Neural Architecture Search,” 2018.

    Google Scholar 

  40. F. Hutter, L. Kotthoff and J. Vanschoren, “Automatic Machine Learning: Methods, Systems, Challenges,” 2019.

    Google Scholar 

  41. D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan and D. Hassabis, “Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm,” 2017.

    Google Scholar 

  42. A. de la Fortelle, “The perception-decision gap (invited talk),” in ECCV, 2018.

    Google Scholar 

  43. A. Rasouli, I. Kotseruba and J. K. Tsotsos, “Are They Going to Cross? A Benchmark Dataset and Baseline for Pedestrian Crosswalk Behavior,” 2017.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Jungmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jungmann, A., Lang, C., Pinsker, F., Kallweit, R., Taubenreuther, M., Butenuth, M. (2020). Artificial intelligence for automated driving – quo vadis?. In: Bertram, T. (eds) Automatisiertes Fahren 2019. Proceedings. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-27990-5_11

Download citation

Publish with us

Policies and ethics