Skip to main content

Making Infrastructure Climate Resilient: Bridging the Transformation Gap with “Living Labs”?

  • Chapter
  • First Online:
Urban Regions Now & Tomorrow

Part of the book series: Studien zur Resilienzforschung ((STRE))

Abstract

Infrastructure forms the backbone of any urban and regional economy. Energy, water, waste water, transportation and telecommunication facilities and networks shape the picture of cities and urban regions. Infrastructure makes an important contribution to the quality of life. The construction and the operation of infrastructures are responsible for a significant proportion of greenhouse gas emissions and for climate change. Cities and their infrastructures are, at the same time, affected by the impacts of climate change, resulting in the disruption of supply and severe economic damage. What is needed is a transformation towards low carbon, resilient structures that means the design of infrastructures is able to prevent or cope with the impacts of climate change or other attacks on the system. This paper explores, based on the concept of resilience, the question of how to initiate and to support the transformation of the infrastructure sectors. The Living Lab approach is such a transdisciplinary concept and provides the space for innovation. The paper gives an overview of the main features of this approach and points out some preliminary conclusions drawn from a regional case study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adil, A. M., & Ko, Y. (2016). Socio-technical evolution of decentralized energy systems: A critical review and implications for urban planning and policy. Renewable and Sustainable Energy Reviews, 57, 1025–1037.

    Article  Google Scholar 

  • Alderson, D. L., Brown, G. G., & Carlyle, W. M. (2015). Operational models of infrastructure resilience. Risk Analysis, 35(4), 562–586.

    Article  PubMed  Google Scholar 

  • Almirall, E., Lee, M., & Wareham, J. (2012). Mapping living labs in the landscape of innovation methodologies. Technology Innovation Management Review, 12–18.

    Google Scholar 

  • APSC (Australian Public Service Commission). (2007). Tackling wicked problems. A public policy perspective. Contemporary Government Challenges, Melbourne.

    Google Scholar 

  • Arcari, P., Biggs, C., Maller, C., Strengers, Y., Horne, R., & Ryan, C. (2012). Resilient urban systems: A socio-technical study of community scale climate change adaptation initiatives. Melbourne: Victorian Centre for Climate Change Adaptation.

    Google Scholar 

  • Arnstein, S. R. (1969). A ladder of citizen participation. Journal of the American Institute of Planners, 35(4), 216–224.

    Article  Google Scholar 

  • Arora, M., Malano, H., Davidson, B., Nelson, R., & George, B. (2015). Interactions between centralized and decentralized water systems in urban context: A review. Wiley Interdisciplinary Reviews: Water, 2(6), 623–634.

    Article  Google Scholar 

  • Bell, S., Morse, S., & Shah, R. (2012). Understanding stakeholder participation in research as part of sustainable development. Journal of Environmental Management, 101, 13–22.

    Article  PubMed  Google Scholar 

  • Beratan, K. (2007). A cognition-based view of decision processes in complex social-ecological systems. Ecology and Society, 12(1), 27.

    Article  Google Scholar 

  • Biggs, C., et al. (2014). Visions of resilience: Design-led transformation for climate extremes. Melbourne: Victorian Eco-Innovation Lab.

    Google Scholar 

  • Birkmann, J., Schanze, J., Müller, P., & Stock, M. H. (2012). Anpassung an den Klimawandel durch räumliche Planung. Grundlagen, Strategien, Instrumente. E-Paper der ARL Nr. 13, Akademie für Raumforschung und Landesplanung, Hannover.

    Google Scholar 

  • BMI (Bundesministerium des Innern). (2011). Schutz Kritischer Infrastrukturen – Risiko- und Krisenmanagement (Leitfaden für Unternehmen und Behörden).

    Google Scholar 

  • Boone, W. (2014). Functional resilience: The “Business End” of organizational resilience. The CIP Report, 12(7), 5–8.

    Google Scholar 

  • Bruneau, M., Chang, S. E., Eguchi, R. T., et al. (2003). A framework to quantitatively assess and enhance the seismic resilience of communities. Earthquake Spectra, 19(4), 733–752.

    Article  Google Scholar 

  • Bruneau, M., & Reinhorn, A. (2007). Exploring the concept of seismic resilience for acute care facilities. Earthquake Spectra, 23(1), 41–62.

    Article  Google Scholar 

  • Bulkeley, H., Broto, V. C., & Maassen, A. (2014). Low-carbon transitions and the reconfiguration of urban infrastructure. Urban Studies, 51(7), 1471–1486.

    Article  Google Scholar 

  • Chappin, E. J. L., & Van der Lei, T. (2014). Adaptation of interconnected infrastructures to climate change: A socio-technical systems perspective. Utilities Policy, 31, 10–17.

    Article  Google Scholar 

  • Chmutina, K., & Goodier, C. I. (2014). Alternative future energy pathways: Assessment of the potential of innovative decentralised energy systems in the UK. Energy Policy, 66, 62–72.

    Article  Google Scholar 

  • De Moel, H., Jongman, B., Kreibich, H., Merz, B., Penning-Rowsell, E., & Ward, P. J. (2015). Flood risk assessments at different spatial scales. Mitigation and Adaptation Strategies for Global Change, 20(6), 865–890.

    Google Scholar 

  • Deng, Y., Cardin, M. A., Babovic, V., Santhanakrishnan, D., Schmitter, P., & Meshgi, A. (2013). Valuing flexibilities in the design of urban water management systems. Water Research, 47(20), 7162–7174.

    Article  PubMed  Google Scholar 

  • Dessai, S. (2011). Planning and decision making without scenarios. In S. Batterbury (Ed.), Adaptive learning—A think-tank on preparedness for climate change adaptation in local and state planning in Victoria (pp. 15–17). Melbourne: Melbourne School of Land and Environment. University of Melbourne.

    Google Scholar 

  • Dessai, S., & Hulme, M. (2003). Does climate policy need probabilities? Working Paper 34, Tyndall Centre for Climate Change Research, Norwich.

    Google Scholar 

  • Dessai, S., & Van der Sluijs, J. (2007). Uncertainty and climate change adaptation—A scoping study. Utrecht: Copernicus Institute of Utrecht University.

    Google Scholar 

  • Drouet, L., Bosetti, V., & Tavoni, M. (2015). Selection of climate policies under the uncertainties in the Fifth Assessment Report of the IPCC. Nature Climate Change, 5, 937–940.

    Article  Google Scholar 

  • Ferroukhi, R. et al. (2015). Renewable energy in the water, energy & food nexus. The International Renewable Energy Agency (IRENA).

    Google Scholar 

  • Fichter, K., Von Gleich, A., Pfriem, R., & Siebenhüner, B. (2010). Theoretische Grundlagen für erfolgreiche Klimaanpassungsstrategien. Bremen/Oldenburg.

    Google Scholar 

  • Forzieri, G., et al. (2015). Resilience of large investments and critical infrastructures in Europe to climate change. Luxembourg: Publications Office of the European Union.

    Google Scholar 

  • Foxon, T. J., Bale, C. S. E., Busch, J., Bush, R., Hall, S., & Roelich, K. (2015). Low carbon infrastructure investment: Extending business models for sustainability. Infrastructure Complexity, 2(1).

    Google Scholar 

  • Furfari, S. (2016). Energy efficiency of engines and appliances for transport on land, water, and in air. Ambio, 45(Suppl 1), 63–68.

    Article  Google Scholar 

  • Furlong, C., De Silva, S., Guthrie, L., & Considine, R. (2016). Developing a water infrastructure planning framework for the complex modern planning environment. Utilities Policy, 38, 1–10.

    Article  Google Scholar 

  • Geels, F. W. (2002). Technological transitions as evolutionary reconfiguration processes: A multi-level perspective and a case-study. Research Policy, 31(8–9), 1257–1274.

    Article  Google Scholar 

  • Geels, F. W. (2004). From sectoral systems of innovation to socio-technical systems. Research Policy, 33(6–7), 897–920.

    Article  Google Scholar 

  • Geels, F. W. (2005). The dynamics of transitions in socio-technical systems: A multi-level analysis of the transition pathway from horse-drawn carriages to automobiles (1860–1930). Technology Analysis & Strategic Management, 17(4), 445–476.

    Article  Google Scholar 

  • Geels, F. W. (2012). A socio-technical analysis of low-carbon transitions: Introducing the multi-level perspective into transport studies. Journal of Transport Geography, 24, 471–482.

    Article  Google Scholar 

  • Gerum, J. (2009). Stakeholder-Management bei Projektentwicklungsunternehmen im Bauwesen. Zürich: vdf Hochschulverlag.

    Google Scholar 

  • Gillingham, K., Nordhaus, W., Anthoff, D., Blanford, G., Bosetti, V., Christensen, P., et al. (2015). Modelling uncertainty in climate change: A multi-model comparison. CESifo Working Paper No. 5538.

    Google Scholar 

  • Global Commission on the Economy and Climate. (2014). Infrastructure investment needs of a low-carbon scenario.

    Google Scholar 

  • Goldthai, A. (2014). Rethinking the governance of energy infrastructure: Scale, decentralization and polycentrism. Energy Research & Social Science, 1, 134–140.

    Article  Google Scholar 

  • Growitsch, C., Malischek, R., Nick, S., & Wetzel, H. (2015). The costs of power interruptions in Germany: A regional and sectoral analysis. German Economic Review, 16(3), 307–323.

    Article  Google Scholar 

  • Guikema, S., et al. (2015). Infrastructure systems, risk analysis, and resilience—Research gaps and opportunities. Risk Analysis, 35(4), 560–562.

    Article  PubMed  Google Scholar 

  • Hallegatte, S., Lecocq, F., & de Perthuis, C. (2011). Designing climate change adaptation policies. An economic framework. Washington, DC: The World Bank Sustainable Development Network.

    Book  Google Scholar 

  • Hart, S. (2015). Principles of infrastructure resilience. The CIP Report, 14(6), 2–3.

    Google Scholar 

  • Heiskanen, E., Jalas, M., Rinkinen, J., & Tainio, P. (2015). The local community as a “low-carbon lab”: Promises and perils. Environmental Innovation and Societal Transitions, 14, 149–164.

    Article  Google Scholar 

  • Hendrickson, T. P., Nguyen, M. T., Sukardi, M., Miot, A., Horvath, A., & Nelson, K. L. (2015). Life-cycle energy use and greenhouse gas emissions of a building-scale wastewater treatment and nonpotable reuse system. Environmental Science and Technology, 49, 10303–10311.

    Article  PubMed  Google Scholar 

  • Hughes, G., Chinowsky, P., & Strzepek, K. (2010). The costs of adaptation to climate change for water infrastructure in OECD countries. Utilities Policy, 18, 142–153.

    Article  Google Scholar 

  • Imperial College and Element Energy. (2014). Infrastructure in a low-carbon energy system to 2030: Transmission and distribution. Final report for The Committee on Climate Change. Cambridge.

    Google Scholar 

  • Jahn, T., Bergmann, M., & Keil, F. (2012). Transdisciplinarity: Between mainstreaming and marginalization. Ecological Economics, 79, 1–10.

    Article  Google Scholar 

  • Jenkins, J., & Mansur, S. (2011). Bridging the clean energy valleys of death. Helping American entrepreneurs meet the nations energy innovation imperative. Oakland: Breakthrough Institute.

    Google Scholar 

  • Jongman, B., Hochrainer-Stigler, S., Feyen, L., Aerts, J. C. J. H., Mechler, R., Botzen, W. J. W., et al. (2014). Increasing stress on disaster-risk finance due to large flood. Nature Climate Change, 4, 264–268.

    Article  Google Scholar 

  • Jongman, B., Winsemius, H. C., Aerts, J. C. J. H., Coughlan de Perez, E., van Aalst, M. K., Kron, W., et al. (2015). Declining vulnerability to river floods and the global benefits of adaptation. Proceedings of the National Academy of Sciences, 112(18), E2271–E2280.

    Article  Google Scholar 

  • Kaufmann, S. (2012). Complex systems, anticipation, and collaborative planning for resilience. In E. V. Goldstein (Ed.), Collaborative resilience—Moving through crisis to opportunity (pp. 62–98). Cambridge: The MIT Press.

    Google Scholar 

  • Kelly, S. (2015). Estimating economic loss from cascading infrastructure failure: A perspective on modelling interdependency. Infrastructure Complexity, 2(1).

    Google Scholar 

  • Kennedy, C., & Corfee-Morlot, J. (2013). Past performance and future needs for low carbon climate resilient infrastructure—An investment perspective. Energy Policy, 59, 773–783.

    Article  Google Scholar 

  • Lechtenböhmer, S., Barthel, C., Merten, F., Schneider, C., Schüwer, D., & Seifried, D. (2010). Redesigning urban infrastructures for a low-emission future. An overview of urban low-carbon technologies. S.A.P.I.EN.S [Online] (3.2), 1–16.

    Google Scholar 

  • Libbe, J. (2013). Angepasste energie- und siedlungswasserwirtschaftliche Infrastrukturen zur Verbesserung der Resilienz. In K. Beckmann (Ed.), Jetzt auch noch resilient? – Anforderungen an die Krisenfestigkeit der Städte (pp. 29–36). Berlin: Deutsches Institut für Urbanistik.

    Google Scholar 

  • Liedtke, C., Welfens, M. J., Rohn, H., & Nordmann, J. (2012). LIVING LAB: User-driven innovation for sustainability. International Journal of Sustainability in Higher Education, 13(2), 106–118.

    Article  Google Scholar 

  • Lonsdale, K. (2012). Beyond tools: Building learning organisations to adapt to a changing climate. Melbourne.

    Google Scholar 

  • Luyet, V., Schlaepfer, R., Parlange, M. B., & Buttler, A. (2012). A framework to implement stakeholder participation in environmental projects. Journal of Environmental Management, 111, 213–219.

    Article  PubMed  Google Scholar 

  • Maassen, A. (2012). Heterogeneity of lock-in and the role of strategic technological interventions in urban infrastructural transformations. European Planning Studies, 20(3), 441–460.

    Article  Google Scholar 

  • Madani, K. (2015). Using game theory to address modern resource management problems. Grantham Institute London. Briefing Note No 2.

    Google Scholar 

  • Martinsa, J., et al. (2013). Real options in infrastructure: Revisiting the literature. Lisbon: University of Lisbon.

    Google Scholar 

  • McCormick, K., Mont, O., Rodhe, H., Orsato, R., Ryan, C., & Neij, L. (2014). Strategies for sustainable solutions: An interdisciplinary and collaborative research agenda. Journal of Cleaner Production, 83, 5–6.

    Article  Google Scholar 

  • McDaniels, T., Chang, S., Cole, D., Mikawoz, J., & Longstaff, H. (2008). Fostering resilience to extreme events within infrastructure systems: Characterizing decision contexts for mitigation and adaptation. Global Environmental Change, 18(2), 310–318.

    Article  Google Scholar 

  • McDaniels, T. L., Chang, S. E., Hawkins, D., Chew, G., & Longstaff, H. (2015). Towards disaster-resilient cities: An approach for setting priorities in infrastructure mitigation efforts. Environment Systems and Decisions, 35(2), 252–263.

    Article  Google Scholar 

  • McKibbin, J. (2015). Ascendance, resistance, resilience. Concepts and analyses for designing energy and water systems in a changing climate. Sydney: Institute for Sustainable Futures.

    Google Scholar 

  • McMahon, R., Stauffacher, M., & Knutti, R. (2015). The unseen uncertainties in climate change: Reviewing comprehension of an IPCC scenario graph. Climatic Change, 133, 141–154.

    Article  Google Scholar 

  • Meurer, J., Erdmann, L., Von Geibler, L., Echternacht, L. (2015). Arbeitsdefinition und Kategorisierung von Living Labs. Arbeitspapier im Arbeitspaket 1 (AP1.1c) im INNOLAB Projekt: “Living Labs in der Green Economy: Realweltliche Innovationsräume für Nutzerintegration und Nachhaltigkeit”. Siegen.

    Google Scholar 

  • Mitchell, R., Agle, B., & Wood, D. (1997). Toward a theory of stakeholder identification and salience: Defining the principle of who and what really counts. The Academy of Management Review, 22, 853–886.

    Google Scholar 

  • Monstadt, J. (2009). Conceptualizing the political ecology of urban infrastructures: Insights from technology and urban studies. Environment and Planning A, 41(8), 1924–1942.

    Article  Google Scholar 

  • Moss, T. (2008). “Cold spots” stadttechnischer Systeme. Herausforderungen für das moderne Infrastruktur-Ideal in schrumpfenden ostdeutschen Regionen. In T. Moss, M. Naumann, & M. Wissen (Eds.), Infrastrukturnetze und Raumentwicklung: Zwischen Universalisierung und Differenzierung (pp. 113–136). München: oekom.

    Google Scholar 

  • Müller, D. B., Liu, G., Lovik, A. N., Modaresi, R., Pauliuk, S., Steinhoff, F. S., et al. (2013). Carbon emissions of infrastructure development. Supplementary information SI-1. Environmental Science and Technology.

    Google Scholar 

  • Müller-Stewens, G., & Lechner, C. (2005). Strategisches management. Stuttgart: Schäffer-Poeschel.

    Google Scholar 

  • Mulvenna, M., & Martin, S. (2013). Living labs: Frameworks and engagement. In R. J. Howlett, B. Gabrys, K. Musial-Gabrys, & J. Roach (Eds.), Innovation through knowledge transfer 2012 (pp. 135–143). Heidelberg: Springer.

    Chapter  Google Scholar 

  • MWK-BAWÜ (Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg). (2013). Wissenschaft für Nachhaltigkeit: Herausforderung und Chance für das baden-württembergische Wissenschaftssystem.

    Google Scholar 

  • Nevens, F., Frantzeskaki, N., Gorissen, L., & Loorbach, D. (2013). Urban transition labs: Co-creating transformative action for sustainable cities. Journal of Cleaner Production, 50, 111–122.

    Article  Google Scholar 

  • Nevens, F., & Roorda, C. (2014). A climate of change: A transition approach for climate neutrality in the city of Ghent (Belgium). Sustainable Cities and Society, 10, 112–121.

    Article  Google Scholar 

  • Oberdörfer, J., Scheele, U., Badewein, S., & Hecker, D. (2014). Klimaanpassung und Flächennutzung: Neue Managementansätze unter den Bedingungen von Unsicherheit. 31. Werkstattbericht, nordwest2050, Oldenburg.

    Google Scholar 

  • O’Brien, E. J., Hajializadeh, D., & Power, R. T. (2015). Quantifying the impact of critical infrastructure failure due to extreme weather events. In 12th International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP12), Vancouver, Canada, July 12–15, 2015.

    Google Scholar 

  • O’Rourke, T. D. (2007). Critical infrastructure, interdependencies, and resilience. BRIDGE—National Academy of Engineering, 37(1), 22.

    Google Scholar 

  • Pandit, A., & Crittenden, J. C. (2015). Resilient urban systems: Where we stand now and where we need to go. Solutions Journal, 6(1), 74–81.

    Google Scholar 

  • Pandit, A., Lu, Z., & Crittenden, J. C. (2015). Managing the complexity of urban systems. Journal of Industrial Ecology, 19(2), 201–204.

    Article  Google Scholar 

  • Petit, F., & Lewis, L. P. (2016). Incorporating logical dependencies and interdependencies into infrastructure analyses. The CIP Report (January/February Online).

    Google Scholar 

  • Petit, F., Verner, D., Brannegan, D., Buehring, W., Dickinson, D., Guziel, K., et al. (2015). Analysis of critical infrastructure dependencies and interdependencies. Argonne: Argonne National Laboratory.

    Book  Google Scholar 

  • Quezada, G., Walton, A., & Sharma, A. (2015). Risks and tensions in water industry innovation: Understanding adoption of decentralised water systems from a socio-technical transitions perspective. Journal of Cleaner Production, 113, 263–273.

    Article  Google Scholar 

  • Rasul, G., & Sharma, B. (2015). The nexus approach to water–energy–food security: An option for adaptation to climate change. Climate Policy, 1–21.

    Google Scholar 

  • Reed, M. S., Graves, A., Dandy, N., et al. (2009). Who’s in and why? A typology of stakeholder analysis methods for natural resource management. Journal of Environmental Management, 90(5), 1933–1949.

    Article  PubMed  Google Scholar 

  • Reimer, M. H., Nilsson, E. M., McCormick, K., & Larsen, M. T. (2012). UT CoMeT report #1: Mapping collaborative methods and tools for promoting urban transitions in the Öresund Region.

    Google Scholar 

  • Rittel, H., & Webber, M. (1973). Dilemmas in a general theory of planning. Policy Sciences, 4(1973), 155–169.

    Article  Google Scholar 

  • Rogers, C. D. F., Quinn, A. D., Bouch, C. J., et al. (2012). Resistance and resilience—Paradigms for critical local infrastructure. Proceedings of the ICE—Municipal Engineer, 165(2), 73–83.

    Article  Google Scholar 

  • Rotmans, J., & Loorbach, D. (2010). Towards a better understanding of transitions and their governance: A systematic and reflexive approach. In J. Grin, J. Rotmans, & J. Schot (Eds.), Transitions to sustainable development: New directions in the study of long term transformative change (pp. 105–220). New York: Routledge.

    Google Scholar 

  • Ryan, C. (2011). Eco-acupuncture: Designing future transitions for urban communities for a resilient low-carbon future. Melbourne, Australia: University of Melbourne.

    Google Scholar 

  • Ryan, C. (2013). Eco-acupuncture: Designing and facilitating pathways for urban transformation, for a resilient low-carbon future. Journal of Cleaner Production, 50, 189–199.

    Article  Google Scholar 

  • Ryan, C., Gaziulusoy, I., McCormick, K., & Trudgeon, M. (2016). Virtual city experimentation: A critical role for design visioning. In J. Evans, A. Karvonen, & R. Raven (Eds.), The experimental city. London: Routledge.

    Google Scholar 

  • Sachs, S., Rühli, E., & Kern, I. (2007). Lizenz zum Managen: Mit Stakeholdern zum Erfolg - Herausforderungen und Good Practices. Bern: Haupt Verlag.

    Google Scholar 

  • Sage, D., Sircar, I., Dainty, A., Fussey, P., & Goodier, C. (2015). Understanding and enhancing future infrastructure resiliency: A socio-ecological approach. Disasters, 39(3), 407–426.

    Article  PubMed  Google Scholar 

  • Schäfer, E. (2014). LIVING LABS – Ein Ansatz für die Innovation klimaresilienter Infrastrukturen? Wirtschafts- und Rechtswissenschaften. Oldenburg: Carl von Ossietzky Universität Oldenburg.

    Google Scholar 

  • Scheele, U., & Schäfer, E. (2013). Urban Living Labs – Ein Ansatz zum Umgang mit Unsicherheit bei Innovationen in Infrastruktursystemen? InfrastrukturRecht 10. Jg. (H.11), 319–322.

    Google Scholar 

  • Scheele, U., & Schäfer, E. (2016). Mehr Teilhabe, mehr Stabilität: Beispiel „EVA Lanxmeer“. In Th. Kluge & E. Schramm (Eds.), Wasser 2050: Mehr Nachhaltigkeit durch Systemlösungen (pp. 81–90). München: oekom-Verlag.

    Google Scholar 

  • Schneidewind, U., & Scheck, H. (2012). Zur Transformation des Energiesektors – ein Blick aus der Perspektive der Transition-Forschung. In H.-G. Servatius et al. (Eds.), Smart energy (pp. 45–61). Berlin und Heidelberg: Springer.

    Google Scholar 

  • Schneidewind, U., & Scheck, H. (2013). Die Stadt als “Reallabor“ für Systeminnovationen. In J. Rückert-John (Ed.), Soziale Innovation und Nachhaltigkeit: Perspektiven sozialen Wandels (pp. 229–248). Wiesbaden: Springer.

    Google Scholar 

  • Scholz, R. W. (2011). Environmental literacy in science and society: From knowledge to decisions. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Schupisser, S. (2002). Stakeholder-Management: Beziehungen zwischen Unternehmungen und nicht-marktlichen Stakeholder-Organisationen - Entwicklung und Einflussfaktoren. Zürich: Haupt.

    Google Scholar 

  • Sitzenfrei, R., Möderl, M., & Rauch, W. (2013). Assessing the impact of transitions from centralised to decentralised water solutions on existing infrastructures–integrated city-scale analysis with VIBe. Water Research, 47(20), 7251–7263.

    Google Scholar 

  • Smith, A., & Raven, R. (2012). What is protective space? Reconsidering niches in transitions to sustainability. Research Policy, 41(6), 1025–1036.

    Article  Google Scholar 

  • Sommer, U., & Wiechert, C. (2014). Lernen von Vauban. Ein Studienprojekt und mehr… PT_Materialien 32. Aachen: PT.RWTH Aachen.

    Google Scholar 

  • Stahl, C. H. (2014). Out of the Land of Oz: The importance of tackling wicked environmental problems without taming them. Environment Systems and Decisions, 34(4), 473–477.

    Article  Google Scholar 

  • Stern, N. (2016). Current climate models are grossly misleading. Nature, 530, 407–409.

    Google Scholar 

  • Stewart, M. G., Val, D. V., Bastidas-Arteaga, E., O’Connor, A., & Wang, X. (2014). Climate adaptation engineering and risk-based design and management of infrastructure. Maintenance and safety of aging infrastructure (pp. 641–684). CRC Press.

    Google Scholar 

  • Stokes, C. S., Simpson, A. R., & Maier, H. R. (2014). The cost–greenhouse gas emission nexus for water distribution systems including the consideration of energy generating infrastructure: An integrated conceptual optimization framework and review of literature. Earth Perspectives, 1(9).

    Google Scholar 

  • Tavasszy, L., Bollinger, L. A., & Dijkema, G. P. J. (2016). Editorial: Special issue on climate adaptation of infrastructure networks. European Journal of Transport and Infrastructure Research, 16(1).

    Google Scholar 

  • The Royal Academy of Engineering. (2011). Infrastructure, engineering and climate change adaptation—Ensuring services in an uncertain future. London: Engineering the Future.

    Google Scholar 

  • United Nations. (2014). World urbanization prospects: The 2014 revision.

    Google Scholar 

  • Von Geibler, J., Erdmann, L., & Liedtke C., et.al. (2013). Living Labs für nachhaltige Entwicklung: Potenziale einer Forschungsinfrastruktur zur Nutzerintegration in der Entwicklung von Produkten und Dienstleistungen. Wuppertal: Wuppertal Institut.

    Google Scholar 

  • Von Gleich, A., Gößling-Reisemann, S. (2015). Resilienz als Leitkonzept für regionale Entwicklung und Klimaanpassung. In A. Von Gleich & B. Siebenhüner (Eds.), Regionale Klimaanpassung im Küstenraum (pp. 109–140). Marburg.

    Google Scholar 

  • Walker, B., & Salt, D. (2006). Resilience thinking: Sustaining ecosystems and people in a changing world. Washington, DC: Island Press.

    Google Scholar 

  • Walker, B., Holling, C. S., Carpenter, S. R., & Kinzig, A. (2004). Resilience, adaptability and transformability in social-ecological systems. Ecology and Society, 9.

    Google Scholar 

  • Walker, W., Haasnoot, M., & Kwakkel, J. (2013). Adapt or perish: A review of planning approaches for adaptation under deep uncertainty. Sustainability, 5(3), 955–979.

    Article  Google Scholar 

  • Watkiss, P. (2015). A review of the economics of adaptation and climate-resilient development. Working paper Grantham Research Institute on climate change and the environment, no. 205.

    Google Scholar 

  • Watkiss, P., Hunt, A., Blyth, W., & Dyszynski, J. (2014). The use of new economic decision support tools for adaptation assessment: A review of methods and applications, towards guidance on applicability. Climatic Change, 132(3), 401–416.

    Article  Google Scholar 

  • Whitehead, C. (2015). Towards a sustainable infrastructure company. Proceedings of the ICE—Engineering Sustainability, 168(1), 7–15.

    Article  Google Scholar 

  • Yip, S., Ferro, C. A. T., Stephenson, D. B., & Hawkins, E. (2011). A simple, coherent framework for partitioning uncertainty in climate predictions. Journal of Climate, 24(17), 4634–4643.

    Article  Google Scholar 

  • Young, K., & Hall, J. W. (2015). Introducing system interdependency into infrastructure appraisal: From projects to portfolios to pathways. Infrastructure Complexity, 2(1).

    Google Scholar 

Download references

Acknowledgements

The research is funded by the Federal Ministry for Environment, Nature Conservation, Building and Nuclear Safety (BMUB) (UFOPLAN 2012—FKZ 3712 48 101) and by the Ems Dollard Region (EDR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernst Schäfer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Fachmedien Wiesbaden GmbH

About this chapter

Cite this chapter

Schäfer, E., Scheele, U. (2017). Making Infrastructure Climate Resilient: Bridging the Transformation Gap with “Living Labs”?. In: Deppisch, S. (eds) Urban Regions Now & Tomorrow. Studien zur Resilienzforschung. Springer, Wiesbaden. https://doi.org/10.1007/978-3-658-16759-2_10

Download citation

Publish with us

Policies and ethics