Skip to main content

Some Aspects of Non-Stationary Signal Processing with Emphasis on Time-Frequency and Time-Scale Methods

  • Conference paper
Wavelets

Part of the book series: Inverse Problems and Theoretical Imaging ((IPTI))

Abstract

The analysis and the processing of nonstationary signals call for specific tools which go beyond Fourier analysis. This paper is intended to review most of the Signal Processing methods which have been proposed in this direction. Emphasis is put on time-frequency representations and on their time-scale versions which implicitly make use of “wavelet” concepts. Relationships between Gabor expansion, wavelet transform and ambiguity functions are detailed by considering signal decomposition as a detection-estimation problem. This permits one to make more precise some of the links which exist between time-frequency and time-scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.M.S.S. Abeysekera, R.J. Bolton, L.C. Westphal, B. Boashash, “Patterns in Hilbert Transforms and Wigner-Ville Distributions of Electrocardiogram Data”, IESF Int. Conf. on Acousl, Speech and Signai Proc. ICASSP-86, Tokyo, pp. 1793–1796, 1986.

    Google Scholar 

  2. J.B. Allen, L.R. Rabiner, “A Unified Approach to Short-Time Fourier Analysis and Synthesis”, 65 (11), pp. 1558–1564, 1977.

    Google Scholar 

  3. R.A. Altes, “Some Invariance Properties of the Wide-Band Ambiguity Function”, J. Acoust. Soc. Am., 53 (4), pp. 1154–1160.

    Article  MathSciNet  ADS  Google Scholar 

  4. R.A. Altes, “Sonar for Generalized Target Description and its Similarity to Animal Echolocation Systems”. J. Acousl Soc. Am., 59(1), pp. 97–105, 1976.

    Article  ADS  Google Scholar 

  5. R.A. Altes, “The Fourier-Mellin Transform and Mammalian Hearing”, J. AcousL Soc, Am., 63 (l), pp. 174–183. 1978.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. R.A. Altes, “Detection, Estimation and Classification with Spectrograms”, J. Acoust. Soc Am., 67 (4), pp. 1232–1246, 1980.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. R.A. Altes, “Overlapping Windows and Signal Representations on the Time-Frequency Plane”, Coll. Int. CNRS “Systemes Sonar Aériens Animaux: Traitement et Analyse des Signaux”, Lyon, pp. 17.1–17.47, 1985.

    Google Scholar 

  8. R. Balian. “Un Principe d’Incertitude Fort en Théorie du Signal ou en Mécanique Quantique”, Comptes Rendus II, 292 (20), pp. 1357–1362, 1981.

    MathSciNet  Google Scholar 

  9. M. Basseville, A. Benveniste (eds.), Detection of Abrupt Changes in Signais and Dynamicai Systems (Lecture Notes in Control and Information Sciences 77). Springer Verlag. New York. 1986.

    Google Scholar 

  10. M.J. Bastiaans, “Gabor’s Expansion of a Signal into Gaussian Elementary Signals”, Proc. IEEE, 68(4), pp. 538–539, 1980.

    Article  Google Scholar 

  11. M.J. Bastiaans, “Gabor’s Signal Expansion and Degrees of Freedom of a Signal”, Opt. Acta, 29 (9). pp. 1223–1229. 1982.

    Article  MathSciNet  Google Scholar 

  12. A. Benveniste, “Design of Adaptive Algorithms for the Tracking of Time-Varying Systems”, Int J. of Adaptive Control and Signal Proc., 1 (1), pp. 3–29, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Berthon, “Fonctions d’Ambiguité Généralisées et Synthèse de Signaux d Ambiguité Donnée”, 11ème Coll GRETSI sur le Traitement du Signal et des Images. Nice. pp. 157–160. 1987.

    Google Scholar 

  14. J. Bertrand. P. Bertrand. “Représentations Temps-Fréquence des Signaux”. Comptes Rendus II. 299 (13). pp. 635–638. 1984.

    MathSciNet  MATH  Google Scholar 

  15. P. Bertrand. J. Bertrand. “Représentation Temps-Fréquence des Signaux à Large Bande”, La Recherche Aérospatiale, 5. pp. 111 1985.

    MATH  Google Scholar 

  16. P. Bertrand, F. Tardivel, “Représentation Temps-Fréquence des Signaux et Transformations Affines sur le Temps — Application à un Problème d’Imagerie Radar”, 10ème Coll. GRETSI sur le Traitement du Signal et ses Applications, Nice, pp. 7–12, 1985.

    Google Scholar 

  17. A. Blanc-Lapierre, B. Picinbono, “Remarques sur la Notion de Spectre Instantané de Puissance”, Publ Sci Univ. Alger B, 1, pp. 2–32, 1955.

    Google Scholar 

  18. A. Blanc-Lapierre, B. Picinbono, Fonctions Aléatoires, Masson, Paris. 1981.

    MATH  Google Scholar 

  19. B. Bouachache, “Représentation Temps-Fréquence — Application à la Mesure de l’Absorption du Sous-Sol”, Thèse Doct.-Ing., INPG, Grenoble, 1982.

    Google Scholar 

  20. B. Bouachache, E. de Bazelaire, “Reconnaissance des Formes dans le Plan Temps-Fréquence à l’Aide de la Représentation de Wigner-Ville”. 9éme Coll. GRETSI sur le Traitement du Signal et ses Applications, Nice, pp. 879–884. 1983.

    Google Scholar 

  21. G.F. Boudreaux-Bartels. “Time-Varying Signal Processing Using the Wigner Distribution Time-Frequency Signal Representation”, in: Advances in Geophysical Data Processing, 2. pp. 33–79, Jai Press Inc., 1985.

    Google Scholar 

  22. G.F. Boudreaux-Bartels, T.W. Parks, “Time-Varying Filtering and Signal Estimation Using Wigner Distribution Synthesis Techniques”, IEEE Trans on Acoust, Speech and Signal. ASSP-34 (3). pp. 442–451. 1986.

    Article  MathSciNet  Google Scholar 

  23. C. Braccini, G. Gambardella, “Form-Invariant Linear Filtering: Theory and Applications”, IEEE Trans on Acoust, Speech and Signal Proc., ASSP-34 (6), pp. 1612–1627, 1986.

    Article  Google Scholar 

  24. M. Chiollaz, P. Flandrin. N. Gache. “Utilisation de la Représentation de Wigner-Ville Comme Outil de Diagnostic des Défauts de Fonctionnement des Moteurs Thermiques”, lléme Coll. GRETSI sur le Traitement du Signal et des Images, Nice, pp. 579–582, 1987.

    Google Scholar 

  25. C. Chouzenoux, “Analyse Spectrale à Résolution Variable — Application au Signal Parole”, Thèse Doct.-Ing., ENST-SYC, Paris. 1982.

    Google Scholar 

  26. T.A.CM. Claasen, W.F.G. Mecklenbräuker, “The Wigner Distribution — A Tool for Time-Frequency Signal Analysis. Part I: Continuous-Time Signals”, Philips J. Res. 35 (3). pp. 217–250, 1980.

    MathSciNet  MATH  Google Scholar 

  27. T.A.CM. Claasen, W.F.G. Mecklenbrauker. “The Wigner Distribution — A Tool for Time-Frequency Signal Analysis. Part II: Discrete-Time Signals”. Philips J. Res. 35 (4/5), PP 276–300. 1980.

    MathSciNet  MATH  Google Scholar 

  28. T.A.CM. Claasen. W.F.G. Mecklenbrauker, “The Wigner Distribution — A Tool for Time-Frequency Signal Analysis. Part III: Relations with Other Time-Frequency Signal Transformations”, Philips J. Res, 35 (6), pp. 372–389, 1980.

    MathSciNet  MATH  Google Scholar 

  29. L. Cohen, “Generalized Phase-Space Distribution Functions”, J. Math Phys. 7 (5). pp. 781–786, 1966.

    Article  ADS  Google Scholar 

  30. L. Cohen, T.E. Posch, “Positive Time-Frequency Distribution Functions”, IEEE Trans on Acoust., Speech and Signal Proc., Assp-33 (1). pp. 31–38, 1985.

    Article  Google Scholar 

  31. I. Daubechies, A. Grossmann, Y. Meyer, “Painless Nonorthogonal Expansions”, J. Math Phys, 27 (5) pp. 1271–1283. 1985.

    Article  MathSciNet  ADS  Google Scholar 

  32. I. Daubechies, “The Wavelet Transform, Time-Frequency Localization and Signal Analysis”, preprint, 1987.

    Google Scholar 

  33. I. Daubechies, “Orthonormal Bases of Compactly Supported Wavelets”, preprint.

    Google Scholar 

  34. E. Daymier. F. Castanié, “Analyse d une Méthode de Détection des Sauts de Moyenne de Variance”, 10ème Coll GRETSI sur le Traitement du Signal et ses Applications, Nice. pp. 131–136. 1985.

    Google Scholar 

  35. B. Escudié, “Représentation en Temps et Fréquence des Signaux d’Energie Finie: Analyse et Observation des Signaux”, Ann Télécomm., 35 (3–4). pp. 101–111, 1979.

    Google Scholar 

  36. R.M. Fano, “Short-Time Autocorrelation Functions and Power Spectra”, J. Acoust. Soc. Am., 22 (5), pp. 546–550, 1950.

    Article  ADS  Google Scholar 

  37. J.L. Flanagan, Speech Analysis, Synthesis and Perception, Springer-Verlag, Berlin, 1972.

    Google Scholar 

  38. P. Flandrin, B. Escudié, “Sur une Relation Intégrale Entre les Fonctions d’Ambiguité en Translation et en Compression”, Rapport Interne ICPI TS-8110, 1981.

    Google Scholar 

  39. P. Flandrin. W. Martin, “Sur les Conditions Physiques Assurant l’Unicité de la Représentation de Wigner-Ville Comme Représentation Temps-Fréquence”, 9ème Coll GRETSI sur le Traitement du Signal et ses Applications, Nice, pp. 43–49, 1983.

    Google Scholar 

  40. P. Flandrin, “Some Features of Time-Frequency Representations of Multicomponent Signals”, IEEE Int. Conf. on Accusi, Speech and Signal Proc. ICASSP-S4, San Diego (CA), pp. 41B.4.1–41B.4.4, 1984.

    Google Scholar 

  41. P. Flandrin, B. Escudié, “Principe et Mise en Oeuvre de l’Analyse Temps-Fréquence par Transformation de Wigner-Ville, Traitement du Signal”, 2 (2). pp. 143–151, 1985.

    Google Scholar 

  42. P. Flandrin, “Représentations Temps-Fréquence des Signaux Non-Stationnaires”, Thèse Doct. Etat, INPG, Grenoble, 1987.

    Google Scholar 

  43. P. Flandrin, “A Time-Frequency Formulation of Optimum Detection”, IEEE Trans, on Acoust, Speech and Signal Proc., to appear 1988.

    Google Scholar 

  44. P. Flandrin, “On the Spectrum of Fractional Brownian Motions”, IEEE Trans on Info Theory, to appear 1988.

    Google Scholar 

  45. A. Freedman, “A Mechanism of Acoustic Echo Formation”, Acustica, 12, pp. 10–21, 1962.

    MathSciNet  MATH  Google Scholar 

  46. B. Friedlander, B. Porat, “Detection of Transient Signals by the Gabor Representation”, IEEE Int. Conf. on Acoust., Speech and Signal Proc. ICASSP-87, Dallas (TX), pp. 40.1.1–40.1.4, 1987.

    Google Scholar 

  47. D. Gabor. “Theory of Communication”, J. IEE, 93 (III), pp. 429–457.

    Google Scholar 

  48. G. Gambardella. “Time-Scaling and Short-Time Spectral Analysis”. J. Acoust Soc. Am., 44 (6). pp. 1745–1747, 1968.

    Article  ADS  Google Scholar 

  49. G. Gambardella. “A Contribution to the Theory of Short-Time Spectral Analysis with Nonuniform Bandwidth Filters”. IEEE Trans on Circuit Theory, CT-18 (4), pp. 455–460. 1971.

    Article  Google Scholar 

  50. W. Gersh, C. Kitagawa, “A Smoothness Priors Time-Varying AR Coefficient Modeling of Nonstationary Covariance Time Series”, IEEE Trans on Auto. Control, AC-30 (1). pp. 48–57, 1985.

    Google Scholar 

  51. Y. Grenier, “Time-Dependent ARMA Modeling of Non-Stationary Signals”. IEEE Trans on Acoust., Speech and Signal Proc., ASSP-31 (4), pp. 899–911, 1983.

    Article  Google Scholar 

  52. Y. Grenier, “Modélisation de Signaux Non-Stationnaires”, Thèse Doct. Etat, Univ. Paris-Sud. Orsay, 1984.

    Google Scholar 

  53. Y. Grenier, “Parametric Time-Frequency Representations”, in: Traitement du Signal/Signal Processmg (J.L. Lacoume, T.S. Durrani, R. Stora, eds.), Les Houches, Session XLV, pp. 339–397, North-Holland, Amsterdam, 1985.

    Google Scholar 

  54. A. Grossmann, J. Morlet. “Decomposition of Hardy Functions into Square Integrable Wavelets of Constant Shape”, SIAM J. Math Anal., 15 (4). pp. 723–736, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  55. C. Gueguen, “Analyse de la Parole par les Méthodes de Modélisation Paramétrique”, Ann. Télécomm., 40 (5–6), pp. 253–269.

    Google Scholar 

  56. CW. Helström, “An Expansion of a Signal in Gaussian Elementary Signals”, IEEE Trans on Info Theory, IT-12, pp. 81–82, 1966.

    Article  Google Scholar 

  57. F. Hlawatsch. “Interference Terms in the Wigner Distribution”, in:Digital Signal Processing — (V. Cappellini, A G. Constantinides, eds.). pp. 363–367. North-Holland, Amsterdam. 1984.

    Google Scholar 

  58. CP. Janse. A.J.M. Kaizer, “Time-Frequency Distributions of Loudspeakers: The Application of the Wigner Distribution”, J. Audio Eng. Soc., 31 (4). pp. 198–223. 1983.

    Google Scholar 

  59. A.J.E.M. Janssen, “Bargmann Transform. Zak Transform and Coherent States”. J. Math. Phys., 20 (5), pp. 720–731. 1982.

    Article  ADS  Google Scholar 

  60. A.J.E.M. Janssen, “Gabor Representation and Wigner Distribution of Signals”, IEEE Int Coni, on Acoust., Speech and Signal Proc. ICASSP-84, San Diego (CA), pp. 41B.2.1–41B.2.4, 1984.

    Google Scholar 

  61. A.J.E.M. Janssen, “Bilinear Phase-Plane Distribution Functions and Positivity”, J. Math. Phys, 26 (8), pp. 1986–1994, 1985.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  62. H.E. Jensen, T. Hoholdt, J. Justesen, “Double Series Expansions and Spectra of Bounded Signals Using a New Windowfunction”, Matematisk Institut DHT, Mat-Report 96. Lyngby (DK), 1982.

    Google Scholar 

  63. G. Jourdain, “Synthèse de Signaux Certains dont on Connaît la Fonction d’Ambiguité de Type Woodward ou de Type en Compression”, Ann. Télécomm., 32 (1–2), pp. 19–23, 1977.

    Google Scholar 

  64. S.M. Kay, S.L. Mar pie Jr, “Spectrum Analysis — A Modem Perspective”, Proc. IEEE, 69 (11), pp. 1380–1419.

    Google Scholar 

  65. S. Kay, G.F. Boudreaux-Bartels, “On the Optimality of the Wigner Distribution for Detection”, IEEE Int. Conf. on Acoust., Speech and Signal Proc. ICASSP-85. Tampa (FL), pp. 27.2.1–27.2.4, 1985.

    Google Scholar 

  66. E.J. Kelly. R.P. Wishner, “Matched-Filter Theory for High-Velocity, Accelerating Targets”, IEEE Trans Mil Electron., MIL-9, pp. 56–69. 1965.

    Article  Google Scholar 

  67. W. Koenig, H.K. Dunn, L.Y. Lacy. “The Sound Spectrograph”. J. Acoust Soc. Am., 18 (1), pp. 19–49. 1946.

    Article  ADS  Google Scholar 

  68. L.H. Koopmans. The Spectral Analysis of Time Series, Academic Press. New York. 1974.

    MATH  Google Scholar 

  69. R. Kronland-Martinet, J. Morlet, A. Grossmann. “Analysis of Sound Patterns Through Wavelet Transforms”, Int. J. PatternReœgn Artif. Intell, 1 (2). pp. 273–302. 1987.

    Article  Google Scholar 

  70. J.G. Krüger. A Poffyn, “Quantum Mechanics in Phase Space I. Unicity of the Wigner Distribution Function”, Physica, 85A. pp. 84–100, 1976.

    MathSciNet  Google Scholar 

  71. J.L. Lacoume, W. Kofman, “Description des Processus Non-Stationnaires par la Représentation Temps-Fréquence — Applications”. 5éme Coll GRETSI sur le Traitement du Signal et ses Applications, Nice, pp. 95–101. 1975.

    Google Scholar 

  72. H.J. Landau. H.O. Pollak. “Prolate Spheroidal Wave Functions. Fourier Analysis and Uncertainty — II”. Bell Sysl Tech. J., 40. pp. 65–84. 1961.

    MathSciNet  MATH  Google Scholar 

  73. R.M. Lerner. “Representation of Signals”, in: Lectures on Communication System Theory (E.J. Baghdady. ed.), pp. 202–242. Mc Graw-Hill. New York. 1961.

    Google Scholar 

  74. A.L. Levshin. V.F. Pisarenko. G.A. Pogrebinsky. “On a Frequency-Time Analysis of Oscillations”. Ann Geophys, 28 (2). pp. 211–218. 1972.

    Google Scholar 

  75. J.S. Liénard. “Speech Analysis and Reconstruction Using Short-Time. Elementary Waveforms”. IEEE Int Conf. on Acoust, Speech and Signal Proc. ICASSP-SZ Dallas (TX), 1987.

    Google Scholar 

  76. A. de Lima-Veiga, Y. Grenier. “Modèles Evolutifs à Coefficients Stochastiques”, 11ème Coll GRETSI sur le Traitement du Signal et des Images, Nice, pp. 93–96, 1987.

    Google Scholar 

  77. L. Ljung, T. Sòderstròm, Theory and Practice of Recursive Identification, MIT Press. Boston, 1983.

    MATH  Google Scholar 

  78. R.M. Loynes. “On the Concept of the Spectrum for Non-Stationary Processes”. J. Roy Stat. Soc., 30(1). pp. 1–20. 1968.

    MathSciNet  Google Scholar 

  79. J. Makhoul. “Linear Prediction: A Tutorial Review”. Proc. IEEE, 63. pp. 561–580. 1975.

    Article  ADS  Google Scholar 

  80. N. Martin. “An AR Spectral Analysis of Non-Stationary Signals”. Signal Proc, 10 (1), pp. 61–74. 1986.

    Article  ADS  Google Scholar 

  81. W. Martin, “Time-Frequency Analysis of Random Signals”, IEEE Int Conf. on Acoust, Speech and Signal Proc. ICASSP-82, Paris, pp. 1325–1328. 1982.

    Google Scholar 

  82. W. Martin, P. Flandrin, “Detection of Changes in Signal Structure by Using the Wigner-Ville Spectrum”, Signal Proc. 8 (2), pp. 215–233. 1985.

    Article  Google Scholar 

  83. W. Martin, P. Flandrin, “Wigner-Ville Spectral Analysis of Non-Stationary Processes”, IEEE Trans on Acoust, Speech and Signal Proc., ASSP-33 (6), pp. 1461–1470, 1985.

    Article  Google Scholar 

  84. W. Mecklenbräuker, “A Tutorial on Non-Parametric Bilinear Time-Frequency Signal Representations”, in: Traitement du Signal/Signal Processing (J.L. Lacoume, T.S. Durrani, R. Stora, eds.). Les Houches, Session XLV, pp. 277–336, North-Holland, Amsterdam, 1985.

    Google Scholar 

  85. D. Menne, “A Matched Filter Bank for Time Delay Estimation in Bats”, in: Animal Sonar Systems (P. Nachtigall, ed.). Plenum Press, New York, in press.

    Google Scholar 

  86. L.K. Montgomery, I.S. Reed, “A generalization of the Gabor-Helstrom Transform”. IEEE Trans on Info Theory, IT-13. pp. 344–345. 1967.

    Article  Google Scholar 

  87. J.E. Moyal, “Quantum Mechanics as a Statistical Theory”. Proc. Camb. Phil Soc., 45, pp. 99–124. 1949.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  88. C.H. Page, “Instantaneous Power Spectra”, J. Appl. Phys., 23 (1). pp. 103–106, 1952.

    Article  ADS  MATH  Google Scholar 

  89. A. Papoulis, Probability, Random Variables and Stochastic Proœsses, Mc Graw-Hill, New York, 1965.

    Google Scholar 

  90. T. Paul, “Fonctions de Wigner Affines”, Colloque RCP 820 “Ondelettes”, Pau, 1986.

    Google Scholar 

  91. L. Pimonow, Vibrations en Régime fransitojre, Dunod, Paris, 1962.

    Google Scholar 

  92. R.K. Potter, G.A. Kopp, H.C. Green, Visible Speech, D. van Nostrand Co, New York, 1947.

    Google Scholar 

  93. M.B. Priestley, Spectral Analysis and Time Series, Academic Press, New York, 1981.

    MATH  Google Scholar 

  94. A.W. Rihaczek, “Signal Energy Distribution in Time and Frequency” IEEE Trans on Info. Theory. IT-14 (3). pp. 369–374, 1968.

    Article  Google Scholar 

  95. M.R. Schroeder, B.S. Atal, “Generalized Short-Time Power Spectra and Autocorrelation Functions”, J Acoust, Soc Am., 34 (11), pp. 1679–1683. 1962.

    Article  ADS  Google Scholar 

  96. J.A. Simmons, “Acoustic Images of Target Range in the Sonar of Bats”, Naval Res Rev., in press.

    Google Scholar 

  97. D. Slepian, H.O. Pollak, “Prolate Spheroidal Wave Functions, Fourier Analysis and Uncertainty — I”, Bell Syst Tech. J., 40, pp. 43–64, 1961.

    MathSciNet  MATH  Google Scholar 

  98. J.M. Speiser. “Wide-Band Ambiguity Functions”. IEEE Trans on Infa Theory, pp. 122–123. 1967.

    Google Scholar 

  99. J. Tonndorf, “Time/Frequency Analysis Along the Partition of Cochlear Models: A Modified Place Concept”. J. Acoust. Soc. Am., 34 (8), pp. 1337–1350, 1962.

    Article  ADS  Google Scholar 

  100. H.L. van Trees, Detection, Estimation and Modulation Theory — Part III, J. Wiley Sc Sons. New York. 1971.

    Google Scholar 

  101. J. Ville. “Théorie et Applications de la Notion de Signal Analytique”. Cables et Transm., 2ème A (1). pp. 61–74. 1948.

    Google Scholar 

  102. K.W. Wagner, “Zur Theorie der Unvollkommenen Dielektrika”, Ann. Physik, 40 (5). pp. 817–855, 1913.

    Article  ADS  MATH  Google Scholar 

  103. E.P. Wigner, “On the Quantum Correction for Thermodynamic Equilibrium”, Phys Rev, 40. pp. 749–759. 1932.

    Article  ADS  MATH  Google Scholar 

  104. E.P. Wigner. “Quantum-Mechanical Distribution Functions Revisited”, in:Perspectives in Quantum Theory (W. Yourgrau, A. van de Merwe, eds.), pp. 25–36. MIT Press, Cambridge. 1971.

    Google Scholar 

  105. P.M. Woodward. Probability and Information Theory with Application to Radar, Pergamon Press. London, 1953.

    Google Scholar 

  106. N. Yen, “Time and Frequency Representation of Acoustic Signals by Means of the Wigner Distribution Function: Implementation and Interpretation”, J. Acust. Soc. Am., 81 (6), pp. 1841–1850, 1987.

    Article  ADS  Google Scholar 

  107. J.E. Youngberg, S.F. Boll, “Constant-Q Signal Analysis and Synthesis”, IEEE Int Conf. on Acoust. Speech and Signal Proc. ICASSP-78, Tulsa(OK), pp. 375–378, 1978.

    Google Scholar 

  108. M. Zakharia. “Contribution à la Caractérisation et à l’Identification de Formes Simples par Sonar Actif: Application à un Sonar de Pêche”, Thèse Doct.-Ing., Univ. Aix-Marseille II, Luminy, 1982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Flandrin, P. (1989). Some Aspects of Non-Stationary Signal Processing with Emphasis on Time-Frequency and Time-Scale Methods. In: Combes, JM., Grossmann, A., Tchamitchian, P. (eds) Wavelets. Inverse Problems and Theoretical Imaging. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-97177-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-97177-8_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-97179-2

  • Online ISBN: 978-3-642-97177-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics