Skip to main content

Wavelet Transform Analysis of Invariant Measures of Some Dynamical Systems

  • Conference paper
Wavelets

Part of the book series: Inverse Problems and Theoretical Imaging ((IPTI))

Abstract

We present the wavelet transform as a mathematical microscope which is well suited for studying the local scaling properties of fractal measures. We apply this technique, recently introduced in signal analysis, to probability measures on self-similar Cantor sets, to the 2 cycle of period-doubling and to the golden-mean trajectories on two-tori at the onset of chaos. We emphasize the wide range of application of the wavelet transform which turns out to be a natural tool for characterizing the structural properties of fractal objects arising in a variety of physical situations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. B.B. MANDELBROT, The Fractal Geometry of Nature (Freeman, San Francisco, 1983).

    Google Scholar 

  2. On Growth and Form; Fractal and Nonfractal Patterns in Physic E. STANLEY and N. OSTROWSKY, NATO Advanced Studies Institute, 100 (Martinus Nijhoff, Dordrecht, 1986).

    Google Scholar 

  3. Statphys 16, edited by E. STANLEY (North-Holland, Amsterdam, 1986).

    Google Scholar 

  4. P. GRASSBERGER and I. PROCACCIA, Physica 3D, 34 (1984).

    MathSciNet  ADS  Google Scholar 

  5. J.P. ECKMANN and D. RUELLE, Rev. Mod. Phys. 57, 617 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  6. U. FRISCH and G. PARISI, in Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics, International School of Physics “Enrico Fermi”. Course 88, edited by M. GHIL, R. BENZI, and G. PARISI New-York, 1985) p. 84.

    Google Scholar 

  7. T.C. HALSEY, M.E. JENSEN, L.P. KADANOFF, I. PROCACCIA and B.I. SHRAIMAN Phys. Rev. A33, 1141 (1986)

    MathSciNet  ADS  Google Scholar 

  8. P. COLLET, J.L. LEBOWITZ and A. PORZIO, J. Stat. Phys. 47. 606 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  9. P. GOUPILLAU, A. GROSSMAN and J. MORLET, Geoexploration 23, 85 (1984).

    Article  Google Scholar 

  10. R. KRONLAND-MARTINET, J. MORLET and A. GROSSMANN, International Journal of Pattern Recognition and Artificial Intelligence, Special Issue on Expert Systems and Pattern Analysis (1987).

    Google Scholar 

  11. A. GROSSMANN and J. MORLET, Mathematics and Physics, Lectures on Recent Results, edited by L. STREIT (World Scientific Publishing, Singapore, 1987)

    Google Scholar 

  12. I. DAUBECHIES and T. PAUL, Proceedings of the VIIIth Congress of Mathematical Physics (Marseille, 1986), edited by R. SENEOR and M. MEBKHOUT (World Scientific Publishing, 1987).

    Google Scholar 

  13. P.G. LEMARIE and Y. MEYER, Revista Ibero-Americana, vol. 1 NrlY2, 1286 (1987).

    Google Scholar 

  14. M. HOLSCHNEIDER, to appear in J. Stat. Phys. (1988).

    Google Scholar 

  15. A. GROSSMANN, M. HOLSCHNEIDER, R. KRONLAND-MARTINET and J. MORLET, edited by P.C. SABATIER, Advances in Electronics and Electron Physics, Supplément 19, Inverse Problem (Acad. Press, 1987).

    Google Scholar 

  16. A. ARNEODO, G. GRASSEAU and M. HOLSCHNEIDER, to appear in Phys. Rev. Lett. (1988).

    Google Scholar 

  17. D. BESSIS, J.D. FOURNIER, G. SERVIZI, Rev. A36, 920 (1987).

    MathSciNet  Google Scholar 

  18. R. BADII and A. POLITI, Phys. Lett. 104A, 303 (1984).

    MathSciNet  ADS  Google Scholar 

  19. L.A. SMITH, J.D. FOURNIER and E.A. SPIEGEL, Phys. Lett. 114A, 465 (1986).

    ADS  Google Scholar 

  20. A. ARNEODO, G. GRASSEAU and E.J. KOSTELICH, Phys. Lett.124A, 426 (1987).

    ADS  Google Scholar 

  21. P. COLLET and J.P. ECKMANN, Iterated Maps of an Interval as Dynamical Systems (Birkhauser, Boston, 1 980) and references therein.

    Google Scholar 

  22. M. FEIGENBAUM, J. Stat. Phys. 19, 25 (1978) and 21, 669 (1979).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. P. COULLET and C. TRESSER, J. Physique, Colloq. 39, C5-C25 (1978).

    Google Scholar 

  24. C. TRESSER and P. COULLET, C.R. Acad. sci. 287, 377 (1978).

    MathSciNet  Google Scholar 

  25. S.K. MA, Modern Theory of Critical Phenomena (Benjamin Reading Mass, 1976).

    Google Scholar 

  26. K.G. WILSON, Rev. Mod. Phys. 55, 583 (1983).

    Article  ADS  Google Scholar 

  27. P. GRASSBERGER, Phys. Lett. 107A, 101 (1985); see also J. Stat. Phys 26 173 (1981).

    MathSciNet  ADS  Google Scholar 

  28. D. BENSIMON, M.H. JENSEN and L.P. KADANOFF, Phys. Rev. A33, 3622 (1986).

    ADS  Google Scholar 

  29. J.A. GLAZIER, M.H. JENSEN, A. LIBCHABER and J. STAVANS, Phys. Rev. A34, 1621 (1986).

    ADS  Google Scholar 

  30. Z. SU, R.W. ROLLINS and E.R. HUNT, Phys. Rev. A36, 3515 (1987).

    ADS  Google Scholar 

  31. J.P. ECKMANN, Rev. Mod. Phys. 53, 643 (1981).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. E. OTT, Rev. Mod. Phys. 53, 655 (1981).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. S. J. SHENKER, Physica 5D, 405 (1982).

    MathSciNet  ADS  Google Scholar 

  34. M. HERMAN, Pub. I.H.E.S. 49, 5 (1979).

    MathSciNet  MATH  Google Scholar 

  35. M. J. FEIGENBAUM, L.P. KADANOFF and S.J. SHENKER, Physlca 5D, 370 (1982).

    MathSciNet  ADS  Google Scholar 

  36. S. OSTLUND, D. RAND, J.P. SETHNA and E.D. SIGGIA, Phys. Rev. Lett. 49, 132 (1982), and Physlca 8D, 303 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  37. L.P. KADANOFF, J. Stat. Phys. 43, 393 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  38. A. ARNEODO and M. HOLSCHNEIDER, J. Stat. Phys. 50, 995 (1988).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. A. ARNEODO and M. HOLSCHNEIDER, Phys. Rev. Lett. 58, 2007 (1987).

    Google Scholar 

  40. J.A. GLAZIER, G. GUNARATNE and A. LIBCHABER, Phys. Rev. A37, 323 (1988).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Arneodo, A., Grasseau, G., Holschneider, M. (1989). Wavelet Transform Analysis of Invariant Measures of Some Dynamical Systems. In: Combes, JM., Grossmann, A., Tchamitchian, P. (eds) Wavelets. Inverse Problems and Theoretical Imaging. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-97177-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-97177-8_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-97179-2

  • Online ISBN: 978-3-642-97177-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics