Skip to main content

Static electrification by electrolytic processes

  • Chapter
Static Electrification
  • 213 Accesses

Abstract

If one regards a metal in contact with a liquid of high dielectric constant such as water, in which acids, bases or salts, i.e., electrolytes are soluble and dissociated, the metal immersed in the liquid will tend to go into solution in the form of ions. Depending on the nature of the dissolved substances in the liquid and the nature of the metal, the metal will tend to go into solution as positive ions, or reacting with the solution, it may go into solution in the form of complex negative ions. The action is most strongly pronounced in water, although liquified NH3 gas acts in an analogous fashion. When solution takes place, the process continues until under the action of the kinetic bombardment by the ions and of the field of the charge acquired by the charged metal, the metal takes on a specific potential leading to equilibrium between processes of solution and precipitation of ions on the surface. The potential depends on the nature of the metal and the concentration of ions, or dissolved salts, in the solution. Many metals like Zn or the alkali atoms are strongly metallic and tend to send their own positive ions into solution. Other metals, like Al will, in slightly acid solution, go in as positive metal ions, in this case as trivalent Al+++ ions, but in an alkaline NaOH solution will dissolve as Na3AlO3, sending the negative ions \({{H}_{2}}AlO_{3}^{-}\) , \(HAlO_{3}^{=}\) , and \(AlO_{3}^{\equiv }\) into solution. At a certain hydrogen ion concentration, e.g. pH, Al metal exposed to an aqueous solution is quite inert. This is called its iso-electric point at which it sends neither one ion nor the other into solution. Any neutral metal either at its iso-electric point, or that is inert to its environment while not contributing ions, may receive ions of the solution gaining charge until it is in equilibrium with its environment as regards liberation and resolution of the ions as influenced by the charge. For example, Cu in a dilute HC1 solution or Pt in the presence of H+ ions, will receive these, gaining a positive charge and leaving the liquid negative. It does not take a high concentration of dissolved acid to yield considerable charge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Landolt Börnsteins Tabellen, p. 1019ff. Berlin: Springer 1923.

    Google Scholar 

  2. Bowden, F. P., and W. R. Throssel: Proc. Roy. Soc. Lond., Ser A 209, 297 (1951).

    Article  ADS  Google Scholar 

  3. Kunkel, W. B.: J. Appl. Phys. 21, 820 (1950).

    Article  ADS  Google Scholar 

  4. Dodd, E. E.: J. Appl. Phys. 24, 73 (1953).

    Article  ADS  Google Scholar 

  5. Peterson, J. W.: J. Appl. Phys. 25, 501 (1954).

    Article  ADS  Google Scholar 

  6. Gill, E. W. B., and G. F. Alfrey: Nature, Lond. 163, 172 (1949).

    Article  ADS  Google Scholar 

  7. Cooper, W. F.: Brit. J. Appl. Phys. Suppl. 2, S. 11 (1953).

    Google Scholar 

  8. Dolezalek, F.: Chem. Ind. 36, 33 (1913).

    Google Scholar 

  9. Dolezalek, F.: Nature Paris (Oct. 1 ) 1930, 342–344.

    Google Scholar 

  10. Vickeown. S. S., and V. Wauk: Industr. Engg. Chem. 34, Nr. 6.

    Google Scholar 

  11. Lenard, P.: Ann. cl. Phys. 46, 584 (1892).

    Article  ADS  Google Scholar 

  12. Gunn, R., and Associates: Proc. Inst. Radio Engrs. 34, 156P, 162P, 167P, 234, 241, 248 (1946).

    Google Scholar 

  13. Vieweg, H. F.: J. Phys. Chem. 30, 865 (1928).

    Article  Google Scholar 

  14. Richards, H. F.: Phys. Rev. 22, 122 (1923).

    Article  ADS  Google Scholar 

  15. Davy, H.: Ann. Phys. 28, 161 (1808).

    Article  Google Scholar 

  16. Knoblauch, O.: Z. phys. Chem. 39, 225 (1901).

    Google Scholar 

  17. Helmholtz, H. L. F.: Ann. d. Phys. 7, 337 (1879).

    ADS  MATH  Google Scholar 

  18. Perrin, J.: J. Chem. Phys. 2, 607 (1904).

    Google Scholar 

  19. Smolucaowski, W.: Kolloid.-Z. 18, 190 (1916).

    Article  Google Scholar 

  20. Gouy, M.: J. Phys. Radium 9, 457 (1910).

    Google Scholar 

  21. Debye, P., and E. Huckel: Phys. Z. 24, 185, 305, 575 (1923)

    Google Scholar 

  22. Debye, P., and E. Huckel: Phys. Z. 25, 97, 204 (1924).

    Google Scholar 

  23. Henry, W. S. P.: Proc. Roy. Soc. Lond., Ser. A 133, 106 (1931).

    Article  MATH  Google Scholar 

  24. Taylor, H. S., and S. Glasstone: Treatise of Physical Chemistry, 3rd Ed., Vol. 2, pp. 628ff. New York: D. van Nostrand & Co. 1951.

    Google Scholar 

  25. Eversole, W. G., and P. H. Lahr: J. Chem. Phys. 9, 530 (1941).

    Article  ADS  Google Scholar 

  26. Gunn, R., and J. E. Dinger: Terrest. Mag. a. Electr. 51, 477 (1946).

    Google Scholar 

  27. Workman, E. J., and S. E. Reynolds: Phys. Rev. 78, 254 (1950).

    Article  ADS  Google Scholar 

  28. Loeb, L. B., A. F. Kip and A. W. Einarsson: J. Chem. Phys. 6, 265 (1937).

    Google Scholar 

  29. Workman, E. J., and S. E. Reynolds: New Mex. Inst. Min. a. Technol., Thunderstorm Electr. Report Nr. 9, Final, Aug., 1955.

    Google Scholar 

  30. Henniker, J. C.: J. Coll. Sci. 7, 443 (1949).

    Article  Google Scholar 

  31. Henniker, J. C.: Rev. Mod. Phys. 21, 322 (1949).

    Article  ADS  Google Scholar 

  32. Schaefer, V. J.: Phys. Rev. 77, 721 (1950).

    Article  ADS  Google Scholar 

  33. Gill, E. W. B., and G. F. Alfrey: Brit. J. Appl. Phys. Suppl. 2, S. 16 (1953).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1958 Springer-Verlag OHG. Berlin · Göttingen · Heidelberg

About this chapter

Cite this chapter

Loeb, L.B. (1958). Static electrification by electrolytic processes. In: Static Electrification. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-88243-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-88243-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-88245-6

  • Online ISBN: 978-3-642-88243-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics