Skip to main content

Expression von Growth-associated-Protein (GAP-43) als Indikator neuroregenerativer Prozesse im Rückenmark

  • Conference paper
Querschnittlähmungen
  • 30 Accesses

Zusammenfassung

Die Elongation von Axonen und aktive Modellierung ihrer Terminale stellt die Grundlage für die Entstehung neuraler Schaltkreise während der Entwicklung dar, determiniert Erfolg oder Mißerfolg neuraler Regeneration und trägt möglicherweise zu verchiedenen Formen synaptischer Plastizität im erwachsenen Zentralnervensystem bei. Die selektive Inaktivierung oder Retention des Axonwachstums in reifenden Nervenzellen mag sodann die Grenzen für regenerative Prozesse einschließlich der synaptischen Plastizität im adulten Zentralnervensystem verursachen.

Preisträger des Ludwig-Guttmann-Preises 1994

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Literatur

  • Alexander KA, Cimier BM, Meier KE, Storm DR (1987) Regulation of calmodulin binding to p57. J Biol Chem 262: 6108–6113

    PubMed  CAS  Google Scholar 

  • Basi GS, Jacobson RD, Virag J et al. (1987) Primary structure and transcription regulation of GAP-43, a protein associated with nerve growth Cell 49: 785–791

    CAS  Google Scholar 

  • Bisby MA (1987) Dependence of GAP-43 (B50, F1) transport on axonal regeneration in rat dorsal root ganglion neurons. Brain Res: 157–161

    Google Scholar 

  • Brodai A (1981) Neurological Anatomy. Oxford University Press, New York, Oxford

    Google Scholar 

  • Coggins PJ, Zwiers H (1989) Evidence for a single protein kinase C–mediated phosphorylation site in rat brain B-50. J Neurochem 53: 1895–1901

    Article  PubMed  CAS  Google Scholar 

  • Giesler GJ, Spiel HR, Willis WD (1981) Organization of spinothalamic tract axons within the rat spinal cord. J Comp Neurol 195: 245–252

    Article  Google Scholar 

  • Hoffman PN (1989) Expression of GAP-43, a rapidly transported growth-associated protein, and class II beta tubulin, a slowly transported cytoskeletal protein, a coordinated in regenerating neurons. J Neurosci 9: 893–897

    PubMed  CAS  Google Scholar 

  • Kalil K (1988) Regeneration of pyramidal tract axones. In: Waxman SG (ed) Advances in neurology 47: Functional recovery in neurological disease. Raven Press, New York, pp 67–85

    Google Scholar 

  • Kalil K and Skene JHP (1986) Elevated synthesis of an axonally transported protein correlates with axon outgrowth in normal and injured pyramidal tracts. J Neurosci 6: 2563–2570

    PubMed  CAS  Google Scholar 

  • Pullen AH, Sears TA (1983) Trophism between C-type terminals and thoracic motorneurons in the cat. J Physiol 337: 373–388

    PubMed  CAS  Google Scholar 

  • Reh TA, Redshaw JD, Bisby MA (1987) Axons of the pyramidal tract do not increase their transport of growth-associated protein after axotomy. Mol Brain Res 2: 1–6

    Article  Google Scholar 

  • Rothshenker S, Tal M (1985) The transneuronal induction of sprouting and synapse formation in intact mouse muscles. J Physiol 360: 387–396

    Google Scholar 

  • Ruth JL, Morgan C, Pasko A (1985) Nucleotide linker arm analogues useful in oligonucleotide synthesis. DNA 4: 93

    Google Scholar 

  • Schnell L, Schwab ME (1990) Axonal regeneration in the rat spinal cord produced by an antibody against myelin-associated neurite growth inhibitors. Nature 343: 269–272

    Article  PubMed  CAS  Google Scholar 

  • Skene JHP (1989) Axonal growth-associated proteins. Ann Rev Neurosci 12: 127–156

    Article  PubMed  CAS  Google Scholar 

  • Steiner TJ, Turner LM (1972) Cytoarchitecture of the rat spinal cord. J Physiol 222: 123–125 P

    Google Scholar 

  • Van der Zee CEEM, Nielander HB, Vos JP et al. (1989) Expression of growth-associated protein B-50 (GAP-43) in dorsal root ganglia and sciatic nerve during regenerative sprouting. J Neurosci 9: 3505–3512

    PubMed  Google Scholar 

  • Verge VMK, Tetzlaff W, Richardson PM, Bisby MA (1990) Correlation between GAP-43 and nerve growth factor receptors in rat sensory neurons. J Neurosci 10: 926–934

    PubMed  CAS  Google Scholar 

  • Wakim BT, Alexander KA, Masure HR et al. (1987) Amino acid sequence of p 57, a neurospecific calmodulin-binding protein. Biochem 26: 7466–7470

    Article  CAS  Google Scholar 

  • Wiese UH, Emson PC, Sheppard RC (1989) Production of C- and N-terminusspecific anti-(GAP43) antibodies. Biochem Soc Trans 17: 1058–1059

    PubMed  CAS  Google Scholar 

  • Wiese UH, Emson PC, Sheppard RC (1991) Production and characterisation of an anti-peptide antibody specific for the growth-associated protein, GAP-43. Brain Res 554: 145–152

    Article  PubMed  CAS  Google Scholar 

  • Wiese UH, Ruth JL, Emson PC (1992) Differential expression of growth-associated protein (GAP-43) mRNS in rat primary sensory neurons after peripheral nerve lesion: a non-radioactive in situ hybridisation study. Brain Res 592: 141–156

    Article  PubMed  CAS  Google Scholar 

  • Woolf CJ, Reynolds ML, Molander C et al. (1990) The growth-associated protein GAP-43 appears in dorsal root ganglion cells and in the dorsal horn of the rat spinal cord following peripheral nerve injury. Neuroscience, 34: 465–478

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wiese, U.H. (1996). Expression von Growth-associated-Protein (GAP-43) als Indikator neuroregenerativer Prozesse im Rückenmark. In: Gerner, HJ. (eds) Querschnittlähmungen. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-88030-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-88030-8_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60167-8

  • Online ISBN: 978-3-642-88030-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics