Skip to main content

Equilibrium Thermodynamic Calculations Applied to Meteorite Mineral Assemblages

  • Chapter
Energetics of Geological Processes
  • 199 Accesses

Abstract

Thermodynamic calculations on meteorite mineral assemblages have been applied in two ways: (1) subsolidus equilibria that pertain to conditions within or on parent objects, and (2) condensation of solids from a cooling gaseous nebula of solar composition. The subsolidus calculations fall into two categories: (1) oxidation-reduction equilibria in ordinary chondrites, iron meteorites, pallasites, enstatite chondrites, and carbonaceous chondrites; (2) cation distributions between coexisting phases, olivine-orthopyroxene, orthopyroxene-clinopyroxene, olivine-chromite, and troilite-sphalerite. The subsolidus calculations show that ordinary chondrites and iron meteorites equilibrated under approximately the same oxidation conditions, while enstatite chondrites are five to six orders of magnitude more reduced. The chondrites equilibrated at temperatures in the lower igneous range, 900–985°C. The iron meteorites equilibrated at relatively low pressures, 200–3100 bars, commensurate with parent planets ≤ 200 km in radius. The condensation calculations have been successful in predicting mineral assemblages that have been observed in the primitive, unaltered carbonaceous chondrites. Further refinement of condensation calculations, along with additional thermochemical data, promise to explain the earliest processes in planetary formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Anders, E.: Chemical processes in the early solar system as inferred from meteorites. Acc. Chem. Res. 1, 289–298 (1968).

    Article  Google Scholar 

  • Anders, E.: Meteorites and the early solar system. Ann. Rev. Astron. Astrophys. 9, 1–34 (1971).

    Article  Google Scholar 

  • Anders, E.: Physico-chemical processes in the solar nebula as inferred from meteorites. In: Symposium on the Origin of the Solar System. Reeves, H. (ed.), Paris; Centre Nat. de la Rech. Sci., 1972, pp. 179–195.

    Google Scholar 

  • Arrhenius, G., Alfven, H.: Fractionation and condensation in space. Earth Planet. Sci. Lett. 10, 253–267 (1971).

    Article  Google Scholar 

  • Barton, P. B., Jr., Toulmin, P. III: Phase relations involving sphalerite in the Fe-Zn-S system. Econ. Geol. 61, 815–849 (1966).

    Article  Google Scholar 

  • Blander, M.: Thermodynamic properties of orthopyroxenes and clinopyroxenes based on the ideal two-site model. Geochim. Cosmochim. Acta 36, 787–799 (1972).

    Article  Google Scholar 

  • Blander, M., Abdel-Gawad, M.: The origin of meteorites and the constrained equilibrium condensation theory. Geochim. Cosmochim. Acta 33, 701–716 (1969).

    Article  Google Scholar 

  • Blander, M., Fuchs, L. H.: Calcium-aluminum-rich inclusions in the Allende meteorite: evidence for a liquid origin. Geochim. Cosmochim. Acta 39, 1605–1619 (1975).

    Article  Google Scholar 

  • Blander, M., Katz, J. L.: Condensation of primordial dust. Geochim. Cosmochim. Acta 31, 1025–1034 (1967).

    Article  Google Scholar 

  • Boström, K., Fredriksson, K.: Surface conditions of the Orgueil meteorite parent body as indicated by mineral associations. Smithsonian Misc. Coll. 151, 1–39 (1966).

    Google Scholar 

  • Bunch, T. E., Olsen, E.: Restudy of pyroxene-pyroxene equilibration temperatures for ordinary chondrite meteorites. Contr. Mineral. Petrol. 43, 83–90 (1974).

    Article  Google Scholar 

  • Buseck, P., Goldstein, J.: Olivine compositions and cooling rates of pallasitic meteorites. Bull. Geol. Soc. Am. 80, 2141–2158 (1969).

    Article  Google Scholar 

  • Cameron, A. G. W.: Abundances of the elements in the solar system. Space Sci. Rev. 15, 121–146 (1973).

    Article  Google Scholar 

  • Cameron, A. G. W., Pine, M. R.: Numerical models of the primitive solar nebula. Icarus 18, 377–406 (1973).

    Article  Google Scholar 

  • Eck, R. V., Lippincott, E. R., Dayhoff, M. O., Pratt, Y. T.: Thermodynamic equilibrium and the inorganic origin of organic compounds. Science 153, 628–633 (1966).

    Article  Google Scholar 

  • Fuchs, L. H., Olsen, E., Jensen, K. J.: Mineralogy, mineral-chemistry, and composition of the Murchison (C2) meteorite. Smithsonian Contrib. to the Earth Sci. 10, 1–39 (1973).

    Google Scholar 

  • Griffiths, P. R., Brown, C. W., Lippincott, E. R., Dayhoff, M. O.: Thermodynamic models in cosmochemical systems. Geochim. Cosmochim. Acta 36, 109–128 (1972).

    Article  Google Scholar 

  • Grossman, L.: Condensation in the primitive solar nebula. Geochim. Cosmochim. Acta 36, 597–619 (1972).

    Article  Google Scholar 

  • Grossman, L., Larimer, J. W.: Early chemical history of the solar system. Rev. Geophys. Space Phys. 12, 71–101 (1974).

    Article  Google Scholar 

  • Grover, J., Orville, P.: The partitioning of cations between coexisting single-and multi-site phases with application to the assemblages: orthopyroxene-clinpy-roxene and orthopyroxene-olivine. Geochim. Cosmochim. Acta 33, 205–226 (1969).

    Article  Google Scholar 

  • Hoyle, F.: On the origin of the solar nebula. Quart. J. Roy. Astron. Soc. 1, 28–55 (1960).

    Google Scholar 

  • Jackson, E. D.: Chemical variation in coexisting chromite and olivine in chromite zones of the Stillwater Complex. Econ. Geol., Mono. 4, 41–71 (1969).

    Google Scholar 

  • Kretz, R.: Distribution of magnesium and iron between orthopyroxene and calcic pyroxene in natural mineral assemblages. J. Geol. 71, 773–785 (1963).

    Article  Google Scholar 

  • Larimer, J. W.: Chemical fractionations in meteorites, 1: Condensation of the elements. Geochim. Cosmochim. Acta 31, 1215–1238 (1967).

    Article  Google Scholar 

  • Larimer, J. W.: An experimental investigation of oldhamite, CaS, and the petrologic significance of oldhamite in meteorites. Geochim. Cosmochim. Acta 32, 965–982 (1968a).

    Article  Google Scholar 

  • Larimer, J. W.: Experimental studies on the system Fe-MgO-SiO2-O2 and their bearing on the petrology of chondritic meteorites. Geochim. Cosmochim. Acta 32, 1187–1207 (1968b).

    Article  Google Scholar 

  • Larimer, J. W.: Chemical fractionations in meteorites, 7: Cosmothermometry and cosmobarometry. Geochim. Cosmochim. Acta 37, 1603–1623 (1973).

    Article  Google Scholar 

  • Lewis, J. S.: Low temperature condensation from the solar nebula. Icarus 16, 241–252 (1972).

    Article  Google Scholar 

  • Lord, H. C, III: Molecular equilibria and condensation in a solar nebula and cool stellar atmospheres. Icarus 4, 279–288 (1965).

    Article  Google Scholar 

  • McCallum, I. S.: Equilibrium relationship among the coexisting minerals in the Stillwater Complex, Montana. Ph.D. dissertation, University of Chicago, Chicago, IL. (1968).

    Google Scholar 

  • Medaris, L. G., Jr.: Partitioning of Fe++ and Mg++ between coexisting synthetic olivine and orthopyroxene. Am. J. Sci. 267, 945–968 (1969).

    Article  Google Scholar 

  • Mueller, R. F.: Energetics of certain silicate solid solutions. Geochim. Cosmochim. Acta 26, 581–598 (1962).

    Article  Google Scholar 

  • Mueller, R. F.: A comparison of oxidative equilibria in meteorites and terrestrial rocks. Geochim. Cosmochim. Acta 27, 273–278 (1963).

    Article  Google Scholar 

  • Mueller, R. F.: Phase equilibria and the crystallization of chondritic meteorites. Geochim. Cosmochim. Acta 28, 189–207 (1964).

    Article  Google Scholar 

  • Mueller, R. F.: The system Fe-MgO-SiO2-O2 with applications to terrestrial rocks and meteorites. Geochim. Cosmochim. Acta 29, 967–976 (1965).

    Article  Google Scholar 

  • Mueller, R. F., Olsen, E.: The olivine, pyroxene, and metal content of chondritic meteorites as a consequence of Prior’s rule. Mineral. Mag. 36, 311–318 (1967).

    Article  Google Scholar 

  • Nafziger, R., Muan, A.: Equilibrium phase compositions and thermodynamic properties of olivines and pyroxenes in the system MgO-“FeO”-SiO2. Am. Mineral. 52, 1364–1385 (1967).

    Google Scholar 

  • Olsen, E., Bunch, T.: Empirical derivation of activity coefficients for the magnesium-rich portion of the olivine solid solution. Am. Mineral. 55, 1829–1842 (1970).

    Google Scholar 

  • Olsen, E., Bunch, T.: An attempt to recalibrate the pyroxene-pyroxene thermometer. Meteoritics 10, 468 (1975).

    Google Scholar 

  • Olsen, E., Fredriksson, K.: Phosphates in iron and pallasite meteorites. Geochim. Cosmochim. Acta 30, 459–470 (1966).

    Article  Google Scholar 

  • Olsen, E., Fuchs, L. H.: The state of oxidation of some iron meteorites. Icarus 6, 242–253 (1967).

    Article  Google Scholar 

  • Prior, G. T.: On the genetic relationship and classification of meteorites. Mineral. Mag. 18, 26–44 (1916).

    Article  Google Scholar 

  • Ramberg, H., Devore, G.: The distribution of Fe++ and Mg++ in coexisting olivines and pyroxenes. J. Geol. 59, 193–210 (1951).

    Article  Google Scholar 

  • Ringwood, A. E.: Chemical and genetic relationships among meteorites. Geochim. Cosmochim. Acta 24, 159–197 (1961).

    Article  Google Scholar 

  • Ringwood, A. E., Kaufman, L.: The influence of high pressure on transformation equilibria in iron meteorites. Geochim. Cosmochim. Acta 26, 999–1009 (1962).

    Article  Google Scholar 

  • Robie, R. A., Waldbaum, D. R.: Thermodynamic properties of minerals and related substances at 298.15 K (25.0°C) and one atmosphere (1.013 bars) pressure and at higher temperatures. U.S. Geol. Surv. Bull. 1259, 1–256 (1968).

    Google Scholar 

  • Saxena, S. K.: Thermodynamics of Rock-Forming Crystalline Solutions. New York-Heidelberg-Berlin: Springer, 1973, pp. 1–188.

    Google Scholar 

  • Van Schmus, W. R., Koffman, D. M.: Equilibration temperatures of iron and magnesium in chondritic meteorites. Science 155, 1007–1011 (1967).

    Google Scholar 

  • Schwarcz, H. P., Scott, S. D., Kissin, S. A.: Pressures of formation of iron meteorites from sphalerite compositions. Geochim. Cosmochim. Acta 39, 1457–1466 (1975).

    Article  Google Scholar 

  • Urey, H. C.: The Planets. New Haven, Conn.: Yale Univ. (1952).

    Google Scholar 

  • Virgo, D., Hafner, S.: Fe2+, Mg order-disorder in heated orthopyroxenes. Mineral. Soc. Am. Spec. Paper 2, 67–81 (1969).

    Google Scholar 

  • Williams, R. J.: Activity-composition relations in the fayalite-forsterite solid solution between 900° and 1300°C at low pressures. Earth Planet. Sci. Lett. 15, 296–300 (1972).

    Article  Google Scholar 

  • Wood, J. A.: On the origin of chondrules and chondrites. Icarus 2, 152–180 (1963).

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Olsen, E.J. (1977). Equilibrium Thermodynamic Calculations Applied to Meteorite Mineral Assemblages. In: Saxena, S.K., Bhattacharji, S., Annersten, H., Stephansson, O. (eds) Energetics of Geological Processes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-86574-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-86574-9_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-86576-3

  • Online ISBN: 978-3-642-86574-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics