Skip to main content

Abstract

The Seventeenth Century saw Galileo, Stevin, Huygens and Newton first shape the science we call rational mechanics. Statics had developed, at least in part, by the end of the Sixteenth Century. Thereafter, the early goals were to understand and describe in mathematical terms the translational motion of material bodies, usually idealized as particles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Roberson, R.E., “Computer-oriented dynamic modeling of spacecraft: historical evolution of Eulerian multibody formalisms since 1750”, 28 th International Astronautical Congress (Prag, 25 Sep–1 Oct 1977), IAF Paper 77-A 11.

    Google Scholar 

  2. Schwertassek, R., “Der Roberson/Wittenburg Formalismus und das Programmsystem MULTIBODY zur Rechnersimulation von Mehrkörpersystemen”, DFVLR-FB-78-08, Köln, DFVLR, Wissenschaftliches Berichtswesen, 1978. [English language edition: “The Roberson/Wittenburg formalism and the package MULTIBODY for computer simulations of multibody systems”, European Space Agency, ESA-TT-557, Nov 1979.]

    Google Scholar 

  3. Jaschinski, A., Duffek, W., “Evaluation of bogie models with regard to dynamic curving performance of rail vehicles”, The Dynamics of Vehicles on Roads and on Railway Tracks, Proc. 8th IAVSD Symposium (Cambridge, Mass.), Swets and Zeitlinger, Amsterdam, 1984.

    Google Scholar 

  4. Morman, K.N. Jr., Giannopoulos, F., “Recent advances in the analytical and computational aspects of modelling active and passive vehicle suspensions”, Computational Methods in Ground Transportation Vehicles, (M.M. Kamal, J.A. Wolf, eds.), ASME, AMD Vol.50, 1982, pp.75–115.

    Google Scholar 

  5. Kortüm, W., Utzt, A., “Control law design and dynamic evaluations for a MAGLEV vehicle with combined lift and guidance”, Proc. 1983 American Control Conf. (San Francisco, Jun 1983), Vol.1, pp.276–283.

    Google Scholar 

  6. Limbert, D.A., “Analysis and design of ferromagnetic suspensions for simultaneous lift and guidance of a tracked levitated vehicle”, Sc.D. Dissertation, Department of Mechanical Engineering, MIT, Cambridge, Mass., Dec. 1976.

    Google Scholar 

  7. Vukobratović, M., Stokic, D., Control of Manipulation Robots, Springer-Verlag, Berlin, 1982.

    Google Scholar 

  8. Vukobratović, M., Potkonjac, V., Dynamics of Manipulation Robots, Springer-Verlag, Berlin, 1982.

    MATH  Google Scholar 

  9. Wittenburg, J., “Dynamics of multibody systems”, Proc. XVth IUTAM/ICTAM Congr. (Toronto, 1980), pp.89–127.

    Google Scholar 

  10. Magnus, K., (ed.), Dynamics of Multibody Systems, Proc. IUTAM Symposium (München, 1977), Springer-Verlag, Berlin, 1978.

    MATH  Google Scholar 

  11. Haug, E.J., (ed.), Computer Aided Analysis and Optimization of Mechanical System Dynamics, Proc. NATO Advanced Study Institute (Iowa City, 1983), Springer-Verlag, Berlin, 1984.

    MATH  Google Scholar 

  12. Schwertassek, R., Roberson, R.E., “A perspective on computer oriented multibody dynamic formalisms and their implementations”, Proc. IUTAM/IFToMM Symposium on Dynamics of Multibody Systems (Sept 1985, Udine, Italy), G. Bianchi, W. Schiehlen (eds.), Springer-Verlag, Berlin, 1986, pp.261–273.

    Google Scholar 

  13. Chace, M.A., “DAMN — A prototype program for the dynamic analysis of mechanical networks”, Proc. 7th Annual Share Design Automation Workshop (San Francisco, 1970), pp. 158–172.

    Google Scholar 

  14. Wehage, R.A., Haug, E.J., “Generalized coordinate partitioning for dimension reduction in analysis of constrained dynamic systems”, Trans. ASME, J. Mech. Design 104 (1982), 247–255.

    Article  Google Scholar 

  15. Chace, M.A., “Using DRAM and ADAMS programs to simulate machinery, vehicles”, Agricultural Engrg. (Nov 1978), 18–19 and (Dec 1978), 16–18.

    Google Scholar 

  16. Huston, R.L., Passerello, C, “On multi-rigid-body system dynamics”, Computers and Structures 10 (1979), 439–446.

    Article  MATH  Google Scholar 

  17. Braune, W., Fischer, O., “Über den Schwerpunkt des menschlichen Körpers mit Rücksicht auf die Ausrüstung des deutschen Infanteristen”, Abh. d. k. s. Gesellsch. d. Wissensch. 26 (1889), 560–672.

    Google Scholar 

  18. Fischer, O., Theoretische Grundlagen für eine Mechanik der lebenden Körper, B.G. Teubner, Leipzig, 1906.

    MATH  Google Scholar 

  19. Fischer, O., Kinematik organischer Gelenke, F. Vieweg, Braunschweig, 1907.

    MATH  Google Scholar 

  20. Kane, T.R., Levinson, A.D., “Formulation of equations of motion for complex spacecraft”, J. Guidance and Control 3 (1980), 99–112.

    Article  MathSciNet  MATH  Google Scholar 

  21. Schiehlen, W.O., “Dynamics of complex multibody systems”, SM Archives 9 (1984), 159–195.

    MATH  Google Scholar 

  22. Lilov, L., Lorer, M., “Dynamic analysis of multirigid-body systems based on the Gauss principle”, Zamm 62 (1982), 539–545.

    Article  MathSciNet  MATH  Google Scholar 

  23. Rosenberg, R.C., Karnopp, D.C., Introduction to Physical System Dynamics, McGraw-Hill, NY, 1983.

    Google Scholar 

  24. Witham, R.C., Dubowsky, S., “An improved symbolic manipulation technique for the simulation of nonlinear dynamic systems with mixed time-varying and constant terms”, Trans. ASME, J. Dynamic Syst. Measurement and Control (1977), 157–166.

    Google Scholar 

  25. Paul, B., Kinematics and Dynamics of Planar Machinery, Prentice-Hall, Englewood Cliffs, NJ, 1979.

    Google Scholar 

  26. Sheth, P.N., Uicker, J.J., “IMP (Integrated mechanisms program), a computer-aided design analysis system for mechanisms and linkage”, Trans. ASME, J. Engrg. for Industry 94 (1972), 454–464.

    Article  Google Scholar 

  27. Frisch, H.P., “A vector-dyadic development of the equations of motion for N-coupled rigid bodies and point masses”, NASA TN D-7767, Washington, 1974.

    Google Scholar 

  28. Wittenburg, J., Dynamics of Systems of Rigid Bodies, B.G. Teubner, Stuttgart, 1977.

    MATH  Google Scholar 

  29. Andrews, G.C., Kesavan, H.K., “Simulation of multibody systems using the vector-network model”, Dynamics of Multibody Systems, Proc. IUTAM-Symposium (München, 1977), K. Magnus (ed.), Springer-Verlag, Berlin, 1978, pp.1–13.

    Chapter  Google Scholar 

  30. Rosenthal, D.E., Sherman, M.A., “Symbolic multibody equations via Kane’s method”, AIAA-Paper 83-803, AAS/AIAA Astrodynamics Special Conf. (Lake Placid NY, 1983), pp.1–20.

    Google Scholar 

  31. Roberson, R.E., “On the recursive determination of body frames for multibody dynamic simulation”, J. Appl. Mech. 52, (1985), 698–700.

    Article  Google Scholar 

  32. Nayfeh, A.H., Mook, D.T., Nonlinear Oscillations, J. Wiley & Sons, NY, 1979.

    MATH  Google Scholar 

  33. Schwertassek, R., Roberson, R.E., “A state-space dynamical representation for multibody mechanical systems. Part 1: Systems with tree configurations; Part 2: Systems with closed loops”, Acta Mechanica 50 (1983), 141–161 and 51 (1984), 15–29.

    Article  Google Scholar 

  34. Bos, A.M., “Modelling multibody systems in terms of multibond graphs with application to a motorcycle”, Dissertation Twente University, Enschede, The Netherlands, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Roberson, R.E., Schwertassek, R. (1988). Multibody Systems. In: Dynamics of Multibody Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-86464-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-86464-3_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-86466-7

  • Online ISBN: 978-3-642-86464-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics