Skip to main content

Fine Resolution of Radar Targets

  • Chapter
Radar Target Imaging

Part of the book series: Springer Series on Wave Phenomena ((SSWAV,volume 13))

  • 340 Accesses

Abstract

In this chapter, we present an overview, aided by a systematic progression of concrete examples, of the mathematical and especially the physical details which enter into a description of the radar target scattering process. Mathematically, the singularity expansion method (SEM) is a powerful approach to the calculation and understanding of radar scattering. The corresponding physical illumination of this process is provided, however, by the theory of creeping waves, which naturally leads to the resonance scattering theory on which the SEM is based. The connection between these various methods is pointed out in this chapter, and applications to the inverse scattering problem are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Franz: “Über die Greenschen Funktionen des Zylinders and der Kugel”, Z. Naturforsch. A9, 705–716 (1954)

    MathSciNet  ADS  Google Scholar 

  2. G.N. Watson: “The diffraction of electric waves by the earth”, Proc. Roy. Soc. Ser. A, 95, 83–99 (1919); “The transmission of electric waves round the earth”, ibid., 546-563 (1919)

    ADS  Google Scholar 

  3. W. Franz, R. Galle: “Semiasymptotische Reihen für die Beugung einer ebenen Welle am Zylinder”, Z. Naturforsch. A10, 374–378 (1955)

    MathSciNet  ADS  Google Scholar 

  4. H. Überall, R.D. Doolittle, J.V. McNicholas: “Use of sound pulses for a study of circumferential waves”, J. Acoust. Soc. Am. 39, 564–578 (1966)

    Article  Google Scholar 

  5. C.E. Baum: “On the singularity expansion method for the solution of electromagnetic interaction problems”, Interaction Note 88, Kirtland Air Force Base, Albuquerque, NM, Dec. 1971

    Google Scholar 

  6. C.E. Baum: “The Singularity Expansion Method”, in Transient Electromagnetic Fields, L. B. Felsen (ed.), Topics in Applied Physics vol. 10, Springer Verlag, New York, 1976, pp. 129–179

    Google Scholar 

  7. G.T. Ruck (ed.): Radar Cross Section Handbook (Plenum Press, New York-London, 1970)

    Google Scholar 

  8. H. Überall, G.C. Gaunaurd: “The physical content of the Singularity Expansion Method”, Appl. Phys. Lett. 39, 362–364 (1981)

    Article  ADS  Google Scholar 

  9. G.C. Gaunaurd, H. Überall, A. Nagl: “Complex-frequency poles and creeping-wave transients in electromagnetic-wave scattering”, Proc. IEEE 71, 172–174 (1983)

    Article  ADS  Google Scholar 

  10. See, e.g., L. Flax, G.C. Gaunaurd, H. Überall: “Theory of Resonance Scattering”, Physical Acoustics 15, 191–294 (1981)

    Google Scholar 

  11. H. Überall, G.C. Gaunaurd: “Relation between the ringing of the resonances and surface waves in radar scattering”, IEEE Trans. Antennas Propagat. AP 32, 1071–1079 (1984)

    Article  ADS  MATH  Google Scholar 

  12. A.R. Vaucher, J.V. Subrahmanyam, G.A.H. Cowart, M. Keskin, A.J. Stoyanov, H. Überall: “Helical surface waves on a dielectric rod”, Electromagnetics 6, 209–216 (1986)

    Article  Google Scholar 

  13. J.D. Jackson, Classical Electrodynamics, 1st ed. (J. Wiley, New York, 1962)

    Google Scholar 

  14. J.V. Subrahmanyam, G.A.H. Cowart, M. Keskin, H. Überall, G.C. Gaunaurd, E. Tanglis: “Surface waves and their relation to the eigenfrequencies of a circular-cylindrical cavity”, IEEE Trans. Microw. Th. Techniques, MTT-29, 1066–1072 (1981)

    Article  ADS  Google Scholar 

  15. A.G. Tijhuis: “Angularly propagating waves in a radially inhomogeneous, lossy dielectric cylinder and their connection with the natural modes”, IEEE Trans. Antennas Propagat. AP-34, 813–824(1986)

    Article  ADS  Google Scholar 

  16. J.D. Murphy, P.J. Moser, A. Nagl, H. Überall, “A surface wave interpretation for the resonances of a dielectric sphere”, IEEE Trans. Antennas Propagat. AP-28, 924–927 (1980); P.J. Moser, J.D. Murphy, A. Nagl, H. Überall, “Creeping-wave excitation of the eigenvibr-ations of dielectric resonators”, Wave Motion 3, 283-295 (1981)

    Article  ADS  Google Scholar 

  17. M. Gastine, L. Courtois, J.L. Dormann: “Electromagnetic resonances of free dielectric spheres”, IEEE Trans. Microw. Th. Techniques, MTT-15, 694–700 (1967)

    Article  ADS  Google Scholar 

  18. P.C. Waterman, “Numerical solution of electromagnetic scattering problems”, in Computer Techniques for Electromagnetics, vol. 7 (R. Mittra, ed.), (Pergamon Press, New York, 1973), Chapter 3

    Google Scholar 

  19. M.C. Junger, “Surface pressures generated by pistons on large spherical and cylinders baffles”, J. Acoust. Soc. Am. 41, 1336–1346 (1967)

    Article  ADS  Google Scholar 

  20. P.J. Moser, H. Überall, S.H. Brown, J.M. D’Archangelo, B.L. Merchant, A. Nagl, K.B. Yoo: “Complex eigenfrequencies of axisymmetric objects: Physical interpretation in terms of resonances”, Proc. IEEE 72, 1652–1653 (1984)

    Article  Google Scholar 

  21. H. Überall, P.J. Moser, B.L. Merchant, A. Nagl, K.B. Yoo, S.H. Brown, J.W. Dickey, J.M. DArchangelo: “Complex acoustic and electromagnetic resonance frequencies of prolate spheroids and related elongated objects and their physical interpretation”, J. Appl. Phys. 58, 2109–2124 (1985)

    Article  ADS  Google Scholar 

  22. B.L. Merchant, P.J. Moser, A. Nagl, H. Überall, “Complex pole patterns of the scattering amplitude for conducting spheroids and finite-length cylinders”, IEEE Trans. Antennas Propagat. AP-36, 1769–1778 (1988)

    Article  ADS  Google Scholar 

  23. P.J. Moser, H. Überall, M.A. Morgan, “Finite element computation of complex resonant frequencies for penetrable axisymmetric bodies”, J. Electromag. Waves Applic. 3, 129–142 (1989)

    ADS  Google Scholar 

  24. M.A. Morgan, K.K. Mei, “Finite element computation of scattering by inhomogeneous penetrable bodies of revolution”, IEEE Trans. Antennas Propagat. AP-27, 202–214 (1979)

    Article  ADS  Google Scholar 

  25. D.J. Taylor, A.K. Jordan, P.J. Moser, H. Überall: “Complex resonances of conducting spheres with lossy coating”, IEEE Trans. Antennas Propagat. AP-38, 236–240 (1990)

    Article  ADS  Google Scholar 

  26. DJ. Taylor, H. Überall: “Complex eigenfrequencies of dispersive, anisotropic dielectric spheres and coated conducting spheres”, Proc. 1989 URSI Internat. Symp. Electromag. Theory, Stockholm, Sweden, August 14–17, 1989

    Google Scholar 

  27. P.J. Moser: “The isolation, identification, and interpretation of resonances in the radar scattering cross section for conducting bodies of finite general shape”, Ph.D. thesis, Department of Physics, The Catholic University of America, Washington, DC (1982)

    Google Scholar 

  28. C.E. Baum, B.K. Singaraju: “The singularity and eigenmode expansion methods with application to equivalent circuits and related topics”, in Acoustic, Electromagnetic and Elastic Wave Scattering-Focus on the T-Matrix Approach, ed. by V.K. Varadan and V.V. Varadan (Pergamon, New York, 1980) pp. 431–452

    Google Scholar 

  29. L. Marin: “Natural-mode representation of transient scattering from rotationally symmetric bodies”, IEEE Trans. Antennas Propagat. AP-22, 266–274 (1974); L. Marin: Interaction Note 119, Kirtland Air Force Base, Albuquerque, NM, Sept. 1972

    Article  ADS  Google Scholar 

  30. J.D. Jackson: Classical Electrodynamics (2nd ed.), (J. Wiley, New York, 1975)

    MATH  Google Scholar 

  31. P.J. Moser, H. Überall: “Complex eigenfrequencies of axisymmetric, perfectly conducting bodies: Radar Spectroscopy”, Proc. IEEE 71, 171–172 (1983)

    Article  ADS  Google Scholar 

  32. A. Nagl, H. Überall, P.P. Delsanto, J.D. Alemar, E. Rosario: “Refraction effects in the generation of helical surface waves on a cylindrical obstacle”, Wave Motion 5, 235–247 (1983)

    Article  MATH  Google Scholar 

  33. H. Überall, P.J. Moser, J.D. Murphy, A. Nagl, G. Igiri, J.V. Subrahmanyam, G.C. Gaunaurd, D. Brill, P.P. Delsanto, J.D. Alemar, E. Rosario: “Electromagnetic and acoustic resonance scattering theory”, Wave Motion 5, 307–329 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  34. See, e.g., J.V. Subrahmanyam: “Creeping wave analysis through frequency plane for an obliquely incident plane wave on an elastic scatterer”, Ph.D. thesis, Department of Physics, The Catholic University of America, Washington, DC 1983

    Google Scholar 

  35. W. Franz, K. Klante, “Diffraction by surfaces of variable curvature”, IRE Trans. Antennas Propagat. AP-7, S68–S70 (1959)

    Article  ADS  Google Scholar 

  36. D.G. Vassil’ev: “Formula for the frequency distribution of a shell of revolution submerged in a liquid”, Dokl. Akad. Nauk SSSR 248, 325–328 (1979)

    MathSciNet  ADS  Google Scholar 

  37. B.L. Merchant, A. Nagl, H. Überall: “A method for calculating eigenfrequencies of arbitrarily-shaped convex targets: Eigenfrequencies of conducting spheroids and their relation to helicoidal surface wave paths”, IEEE Trans. Antennas Propagat. AP-37, 629–634 (1989); B.L. Merchant, A. Nagl, H. Überall, “Eigenfrequencies of conducting spheroids and their relation to helicoidal surface wave paths”, in Radar Cross Sections of Complex Objects, ed. by W. Ross Stone (IEEE Press, New York, 1990) pp. 371-378

    Article  ADS  Google Scholar 

  38. D.J. Struik: Differential Geometry, 2nd ed. (Addison-Wesley, Reading, MA 1961)

    MATH  Google Scholar 

  39. Mengyun Zhai, H. Überall: “Scattering of an obliquely incident plane wave by conducting prolate spheroids”, Proceed. 1991 Internat’l Symposium on Electromagnetic Compatibility, Aug. 12–16, 1991, Cherry Hill, NJ

    Google Scholar 

  40. A. Nagl, D. Ashrafi, H. Überall: “Radar cross section of thin wires”, IEEE Trans. Antennas Propagat. AP-39, 105–108 (1991)

    Article  ADS  Google Scholar 

  41. Davood Ashrafi: “Electromagnetic wave scattering by distribution of dipoles”, PhD thesis, Department of Physics, The Catholic University of America, Washington, DC (1989); Y.P. Guo, H. Überall: “The resonance effect of a wire in response to transient waves”, J. Electromag. Waves Applic. 8, 355-366 (1994)

    Google Scholar 

  42. H. Shirai, L.B. Felsen: “Wavefront and resonance analysis of scattering by a perfectly conducting flat strip”, IEEE Trans. Antennas Propagat. AP-34, 1196–1207 (1986)

    Article  ADS  Google Scholar 

  43. L.B. Felsen: “Target strength: some recent theoretical developments”, IEEE J. Ocean Eng. OE-12, 443–452(1987)

    Article  ADS  Google Scholar 

  44. F.M. Tesche: “On the analysis of scattering and antenna problems using the Singularity Expansion technique”, IEEE Trans. Antennas Propagat. AP-21, 53–62 (1973)

    Article  ADS  Google Scholar 

  45. R. Prony: “Essai experimental et analytique, etc.” Paris, J. de l’Ecole Polytechnique 1, cahier 2, 24–76 (1795)

    Google Scholar 

  46. M.L. Van Blaricum, R. Mittra: “A technique for extracting the poles and residues of a system directly from its transient response”, IEEE Trans. Antennas Propagat. AP-23, 777–781 (1975)

    Article  ADS  Google Scholar 

  47. E.K. Miller, D.L. Lager: “Inversion of one-dimensional scattering data using Prony’s method”, Lawrence Livermore Laboratory Report UC-34, February 1979

    Google Scholar 

  48. J.N. Brittingham, E.K. Miller, J.L. Willows: “Pole extraction from real-frequency information”, Proc. IEEE 68, 263–273 (1980)

    Article  Google Scholar 

  49. D.L. Moffat, R.K. Mains: “Detection and discrimination of radar targets”, IEEE Trans. Antennas Propagat. AP-23, 358–367 (1975)

    Article  ADS  Google Scholar 

  50. C. Chuang, D.L. Moffat: “Natural resonances of radar targets via Prony’s method and target discrimination”, IEEE Trans. Aerosp. Electron Sys. 12, 583–589 (1976)

    Article  ADS  Google Scholar 

  51. P.M. Morse, H. Feshbach: Methods of Theoretical Physics (McGraw Hill, New York, 1953) Chap. 13

    MATH  Google Scholar 

  52. G.C. Gaunaurd, H. Überall: “Electromagnetic spectral determination of the material composition of penetrable radar targets”, Nature 287, 708–709 (1980)

    Article  ADS  Google Scholar 

  53. W.E. Howell, H. Überall: “Complex frequency poles of radar scattering from coated conducting spheres”, IEEE Trans. Antennas Propagat. AP-32, 624–627 (1984)

    Google Scholar 

  54. G. Gaunaurd, H. Überall, P.J. Moser: “Resonances of dielectrically coated conducting spheres and the inverse scattering problem”, J. Appl. Phys. 52, 35–43 (1981)

    Article  ADS  Google Scholar 

  55. L. Flax, L.R. Dragonette, H. Überall: “Theory of elastic resonance excitation by sound scattering”, J. Acoust. Soc. Am. 63, 723–731 (1978)

    Article  ADS  MATH  Google Scholar 

  56. See also H. Überall (ed.): Acoustic Resonance Scattering (Gordon and Breach, New York, 1991)

    Google Scholar 

  57. See also N. Gespa, La diffusion acoustique (Editions CEDOCAR, Paris, 1987)

    Google Scholar 

  58. See also N. Veksler, Acoustic Resonance Spectroscopy (Springer Verlag, Berlin/Heidelberg, 1992)

    Google Scholar 

  59. C.E. Baum, E.J. Rothwell, K.M. Chen, D.P. Nyquist: “The Singularity Expansion Method and its application to target identification”, Proceed. IEEE, Special Issue on Electromagnetics (W. Kahn, ed.) Nov. 1991

    Google Scholar 

  60. C.E. Baum: “Scattering, Reciprocity, Symmetry, EEM, and SEM”, Interaction Note 475, Kirtland Air Force Base, Albuquerque, NM, May 1989

    Google Scholar 

  61. C.E. Baum: “SEM Backscattering”, Interaction Note 476, Kirtland Air Force Base, Albuquerque, NM, July 1989

    Google Scholar 

  62. H. Überall, L.R. Dragonette, L. Flax, “Relation between creeping waves and normal modes of vibration of a curved body”, J. Accoust. Soc. Am. 61, 711–715 (1977)

    Article  ADS  Google Scholar 

  63. J.W. Dickey, H. Überall, “Surface wave resonances in sound scattering from elastic cylinders”, J. Acoust. Soc. Am. 63, 319–320 (1978)

    Article  ADS  MATH  Google Scholar 

  64. E. Heyman, L.B. Felsen, “Creeping waves and resonances in transient scattering by smooth convex objects”, IEEE Trans. Antennas Propagat. AP-31, 426–437 (1983)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  65. E. Heyman, L.B. Felsen: “Traveling wave and SEM representations for transient scattering by a circular cylinder”, J. Acoust. Soc. Am. 79, 230–238 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  66. W.E. Howell, H. Überall: “The observation of individual natural-frequency resonances of radar targets through the scattering of long pulses”, Proc. IEEE 73, 1138–1140 (1985)

    Article  ADS  Google Scholar 

  67. W.E. Howell, H. Überall: “Selective observation of resonances via their ringing in transient radar scattering, as illustrated for conducting and coated spheres”, IEEE Trans. Antennas Propagat. AP-38, 293–298 (1990)

    Article  ADS  Google Scholar 

  68. G. Maze, B. Taconet, J. Ripoche: “Influence des ondes de ‘Galerie à Echo’ sur la diffusion d’une onde ultrasonore plane par un cylindre”, Phys. Lett. 84A, 309–312 (1981)

    ADS  Google Scholar 

  69. G. Maze, J. Ripoche, “Méthode d’isolement et d’identification des résonances (MUR) de cylinders et de tubes soumis à une onde acoustique plane dans l’eau”, Rev. Phys. Appl. 18, 319–326 (1983)

    Google Scholar 

  70. J. Ripoche, G. Maze, J.L. Izbicki: “A new acoustic spectroscopy: Resonance spectroscopy by the MIIR”, J. Nondestruct. Eval. 5, 69–79 (1985)

    Article  ADS  Google Scholar 

  71. See also S.K. Numrich, H. Überall: “Scattering of sound pulses and the ringing of target resonances”, Physical Acoustics 21, 235–318 (1992)

    Google Scholar 

  72. E. Heyman, L.B. Felsen: “Non-dispersive closed form approximations for transient propagation and scattering of ray fields”, Wave Motion 7, 335–358 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  73. E. Heyman, L.B. Felsen: “Weakly dispersive spectral theory of transients, Part I: Formulation and interpretation”, IEEE Trans. Antennas Propagat. AP-35, 80–86 (1987)

    Google Scholar 

  74. E. Heyman, L.B. Felsen: “Weakly dispersive spectral theory of transients, Part II: Evaluation of the spectral integral”, IEEE Trans. Antennas Propagat. AP-35, 574–580 (1987)

    Google Scholar 

  75. E. Heyman, L.B. Felsen, “Weakly dispersive spectral theory of transients, Part III: Applications”, IEEE Trans. Antennas Propagat. AP-35 1258–1266 (1987)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Überall, H. (1994). Fine Resolution of Radar Targets. In: Boerner, WM., Überall, H. (eds) Radar Target Imaging. Springer Series on Wave Phenomena, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-85112-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-85112-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-85114-8

  • Online ISBN: 978-3-642-85112-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics